Abstract

As perovskite solar cells show tremendous potential for widespread applications, we find that adding inorganic thermal-stable cesium ions into MAPbI3 results in significantly improves thermal stability. For un-encapsulated perovskite devices, the energy conversion efficiency maintains about 75% of its original value (over 15%) in the MA0.85Cs0.05PbI3 device under 80 min of heating at 140°C in a dry atmosphere (RH≤30%). With significantly improved thermal stability achieved by a convenient process, it is expected that this type of mixed-cation perovskites can further facilitate large scale applications.

© 2017 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription