Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 6,
  • pp. 062502-
  • (2016)

Effectiveness of inserting an InGaN interlayer to improve the performances of InGaN-based blue-violet laser diodes

Not Accessible

Your library or personal account may give you access

Abstract

Electron leakage still needs to be solved for InGaN-based blue-violet laser diodes (LDs), despite the presence of the electron blocking layer (EBL). To reduce further electron leakage, a new structure of InGaN-based LDs with an InGaN interlayer between the EBL and p-type waveguide layer is designed. The optical and electrical characteristics of these LDs are simulated, and it is found that the adjusted energy band profile in the new structure can improve carrier injection and enhance the effective energy barrier against electron leakage when the In composition of the InGaN interlayer is properly chosen. As a result, the device performances of the LDs are improved.

© 2016 Chinese Laser Press

PDF Article
More Like This
Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes

L. C. Le, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. Yang, X. G. He, X. J. Li, J. P. Liu, J. J. Zhu, S. M. Zhang, and H. Yang
Opt. Express 22(10) 11392-11398 (2014)

Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region

J. Yang, D. G. Zhao, D. S. Jiang, X. Li, F. Liang, P. Chen, J. J. Zhu, Z. S. Liu, S. T. Liu, L. Q. Zhang, and M. Li
Opt. Express 25(9) 9595-9602 (2017)

Low threshold current density and high power InGaN-based blue-violet laser diode with an asymmetric waveguide structure

Zhenzhuo Zhang, Jing Yang, Feng Liang, Ping Chen, Zongshun Liu, and Degang Zhao
Opt. Express 31(5) 7839-7849 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.