Abstract

We experimentally demonstrate a direct-detection orthogonal-frequency-division-multiplexing quadrature-phase-shift-keying (OFDM-QPSK) system that is capable of delivering a 32 Gbaud OFDM-QPSK signal over 7 km single-mode fiber-28 (SMF-28). Intra-symbol frequency-domain averaging (ISFA) channel response estimation is applied to suppress in-band noise, while discrete Fourier transform-spread (DFT-spread) is used to reduce the peak-to-average power ratio (PAPR) of the transmitted OFDM signal. With the aid of ISFA-based channel estimation and PAPR reduction enabled by DFT-spread, the bit-error ratio of the system after 7 km SMF-28 transmission can be improved from 2×10−3 to error-free when the received optical power is −8.5  dBm.

© 2016 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription