Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 3,
  • pp. 030604-
  • (2016)

100 Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate all-optical clock recovery for 100 Gb/s return-to-zero on–off keying signals based on a monolithic dual-mode distributed Bragg reflector (DBR) laser, which can realize both mode spacing and wavelength tuning. By using a coherent injection locking scheme, a 100 GHz optical clock can be recovered with a timing jitter of 530 fs, which is derived by an optical sampling oscilloscope from both the phase noise and the power fluctuation. Furthermore, for degraded injection signals with an optical signal-to-noise ratio as low as 4.1 dB and a 25 km long distance transmission, good-quality optical clocks are all successfully recovered.

© 2016 Chinese Laser Press

PDF Article
More Like This
Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery

Biwei Pan, Lu Guo, Limeng Zhang, Dna Lu, Li Huo, Caiyun Lou, and Lingjuan Zhao
Appl. Opt. 55(11) 2930-2935 (2016)

40Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser

Li Wang, Xiaofan Zhao, Caiyun Lou, Dan Lu, Yu Sun, Lingjuan Zhao, and Wei Wang
Appl. Opt. 49(34) 6577-6581 (2010)

320  Gb/s all-optical clock recovery and time de-multiplexing after transmission enabled by single quantum dash mode-locked laser

Jun Luo, Nicola Calabretta, Josué Parra-Cetina, Sylwester Latkowski, Ramón Maldonado-Basilio, Pascal Landais, and Harm J. S. Dorren
Opt. Lett. 38(22) 4805-4808 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.