Abstract

Pockel’s effect and optical rectification induced by the built-in electric field in the space charge region of a silicon surface layer are demonstrated in a {001}-cut high-resistance silicon crystal. The half-wave voltage is about 203 V, deduced by Pockel’s effect. The ratio χzxx(2)/χzzz(2) is calculated to be about 0.942 according to optical rectification. Our comparison with the Kerr signal shows that Pockel’s signal is much stronger. This indicates that these effects are so considerable that they should be taken into account when designing silicon-based photonic devices.

© 2015 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription