Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 12,
  • Issue 4,
  • pp. 040604-
  • (2014)

Data-aided channel estimation and frequency domain equalization of minimum-shift keying in optical transmission systems

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a digital optical communication system based on minimum shift keying (MSK) signal transmission with coherent detection. 5-Gb/s MSK signal can transmit over a 160-km standard single mode fiber (SSMF) without phase compensation. At the receiver, we use data-aided channel estimation and frequency domain equalization (FDE) techniques in the digital signal processing (DSP) algorithm, then analyze its performance characteristics compared with quadrature phase shift keying (QPSK) format. The simulation results show that the MSK format will be a potential candidate for next-generation access network.

© 2014 Chinese Optics Letters

PDF Article
More Like This
Optical minimum-shift keying with external modulation scheme

Takahide Sakamoto, Tetsuya Kawanishi, and Masayuki Izutsu
Opt. Express 13(20) 7741-7747 (2005)

Equalization of nonlinear transmission impairments by maximum-likelihood-sequence estimation in digital coherent receivers

Md. Khairuzzaman, Chao Zhang, Koji Igarashi, Kazuhiro Katoh, and Kazuro Kikuchi
Opt. Express 18(5) 4776-4782 (2010)

M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission

Xiang Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, P. J. Winzer, E. C. Burrows, and A. R. Chraplyvy
Opt. Express 19(26) B868-B881 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.