Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 11,
  • Issue 8,
  • pp. 080603-
  • (2013)

Using bidirectional modulation of 2-Ch phase modulator as basis for nonlinear distortion compensation in analog photonic links

Not Accessible

Your library or personal account may give you access

Abstract

We propose a third-order intermodulation distortion (IMD3) compensation scheme based on the bidirectional modulation of 2-Ch phase modulator (PM). We realize the destructive combination of IMD3 by using different modulation efficiencies and appropriately adjusting the input optical power ratio to satisfy a fixed relationship with modulation efficiency. The primary advantage of this scheme is that out-of-phase IMD3 is introduced using only one 2-Ch PM, thereby resulting in the cancellation of IMD3. Up to 27-dB suppression in IMD3 is experimentally demonstrated-a feature that will be useful in low-distortion analog optical transmission.

© 2013 Chinese Optics Letters

PDF Article
More Like This
SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity

Zhiyu Chen, Lianshan Yan, Wei Pan, Bin Luo, Xihua Zou, Yinghui Guo, Hengyun Jiang, and Tao Zhou
Opt. Express 21(18) 20999-21009 (2013)

Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator

Seong-Ku Kim, Wei Liu, Qibing Pei, Larry R. Dalton, and Harold R. Fetterman
Opt. Express 19(8) 7865-7871 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.