Abstract

Repetition rate-dependent absorbance measurements of synthetic fused silica at 193-nm irradiation are performed in the range of 50-1‚ÄČ000 Hz with an ArF laser calorimeter. The "apparent" single- and twophoton absorption coefficients are determined by measuring the laser fluence-dependent absorbance of fused silica samples with different thicknesses to separate the surface absorption and bulk absorption. The measurement results indicate a reversible nonlinear increase of both apparent single- and two-photon absorption coefficients with increasing repetition rate for the synthetic fused silica, whereas the surface absorption shows no dependence on the repetition rate.

© 2013 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription