Abstract

A highly tunable optical nanoantenna element is proposed through gradual transformation from a sphere to a prolate spheroid. This new element induces field enhancement and an increase in resonance frequency. Rather than a purely metallic material, we propose the use of a metal-coated dielectric spheroid as a nanoelement because of its flexibility. We show that a spheroidal element enhances the near-field better than its rod and sphere counterparts. As such, spheroidal elements are good candidates for improving solar-cell performance.

© 2013 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, Optical Antennas for Enhanced Light-Matter Interactions (Report, The Institute of Optics, University of Rochester, 2010).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
  3. P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
  4. M. L. Brongersma, Nature Photonics 2, 270 (2008).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  6. D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).
  7. L. Novotny, Phys. Today 64, 47 (2011).
  8. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).
  9. J. Li and N. Engheta, IEEE Ant. Prop. Society Int. Symposium 3388 (2007).
  10. J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).
  11. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).
  12. J. Zhao, G. Zheng, S. Li, H. Zhou, Y. Ma, R. Zhang, Y. Shi, and P. He, Chin. Opt. Lett. 10, 042302 (2012).
  13. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
  14. H. Gai, J. Wang, and Q. Tian, Appl. Opt. 46, 2229 (2007).
  15. R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).

2013 (1)

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

2012 (2)

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

J. Zhao, G. Zheng, S. Li, H. Zhou, Y. Ma, R. Zhang, Y. Shi, and P. He, Chin. Opt. Lett. 10, 042302 (2012).

2011 (2)

D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).

L. Novotny, Phys. Today 64, 47 (2011).

2009 (1)

2008 (2)

M. L. Brongersma, Nature Photonics 2, 270 (2008).

K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

2007 (2)

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).

H. Gai, J. Wang, and Q. Tian, Appl. Opt. 46, 2229 (2007).

2005 (1)

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

1983 (1)

Alexander, R. W.

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bharadwaj, P.

Brongersma, M. L.

M. L. Brongersma, Nature Photonics 2, 270 (2008).

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

Deutsch, B.

Eisler, H. J.

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Gai, H.

Guzatov, D.

D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).

He, P.

Hecht, B.

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

Klimov, V.

D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).

Kumar, J.

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

Li, J.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Li, S.

Li, Y.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Lin, Z.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Liu, J.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Long, L. L.

M¨uhlschlegel, P.

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Ma, Y.

Martin, O. J. F.

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

Novotny, L.

L. Novotny, Phys. Today 64, 47 (2011).

P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).

Ordal, M. A.

Pohl, D. W.

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

Shi, Y.

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

Swathi, R. S.

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

Thomas, K. G.

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

Thomas, R.

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

Tian, Q.

Wang, J.

Ward, C. A.

Xue, J.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Yan, J.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Zhang, R.

Zhao, J.

Zheng, G.

Zhou, H.

Zhou, Z.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Zhu, Q.

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

Chin. Opt. Lett. (1)

Curr. Sci. (1)

R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).

Nanoscale Research Lett. (1)

J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).

Nature Photonics (1)

M. L. Brongersma, Nature Photonics 2, 270 (2008).

New J. Phys. (1)

D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).

Phys. Rev. Lett. (1)

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).

Phys. Today (1)

L. Novotny, Phys. Today 64, 47 (2011).

Science (1)

P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).

Other (3)

J. Li and N. Engheta, IEEE Ant. Prop. Society Int. Symposium 3388 (2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

L. Novotny, Optical Antennas for Enhanced Light-Matter Interactions (Report, The Institute of Optics, University of Rochester, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.