Abstract

Noise reduction is one of the most important concerns in electronic speckle pattern interferometry (ESPI). According to partial differential equation (PDE) filtering theory, we present an anisotropic PDE noise-reduction model based on fringe structure information for interferometric fringe patterns. This model is based on coherence diffusion and Perona-Malik (P-M) diffusion. The former can protect the structure information offringe pattern, while the latter can effectively filter off the noise inside the fringes. The proposed model generated by the two diffusion methods helps to obtain good effects of denoising and fidelity. ESPI fringes and the phase pattern are tested. Experimental results validate the performance of the proposed filtering model.

© 2013 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription