Abstract

A new approach is developed to measure the dynamic characteristics of metal sheet under laser shock, including deformation velocity, strain, and strain rate. The detecting laser beam is partially shaded by the target deformation induced by the laser action. A photodiode transforms the received beam intensity real time into an electrical signal which could record the process of the target deformation. The functional relation between the electrical signal and the deformation of the metal sheet is derived. The deformation curve of a thin aluminum and the velocity curve of its deformation are also obtained during the experiment. The results indicate that the average velocity of the elastic deformation of the target can reach 2.999×10<sup>3</sup> m/s in the central area. This new method provides an approach in the study of the effect of strain rate on deformation.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription