Abstract

This letter reports the application of the scanning heating laser source technique to detect microcracks that may be undetected by conventional methods. In the proposed approach, we monitor changes in the transmitted surface acoustic waves (SAWs) as a heating source is scanned over the crack. The experimental system for microcrack detection by a scanning heating laser source is obtained by exploiting the strong dependence of the transmission efficiency of acoustic pulses on the state of the contacts, whether open or closed, between the crack faces. Microcracks can be detected successfully by confirming the heating position at the point of maximal improvement of the transmission efficiency of the SAWs.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription