Abstract

A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment. A continuous xenon lamp is employed as an example. First, the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths, different energies, and certain bandwidth. Next, according to the reported thermal and optical parameters of porcine skin and porcine liver, the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated. Then, the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution. Moreover, the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out. The results of the simulation and experiment are analyzed and compared, and are found to be commendably matched.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription