Abstract

A compact fiber optic accelerometer based on a Michelson interferometer is proposed and demonstrated. In the proposed system, the sensing element consists of two single-mode fibers glued together by epoxy, which then act as a simple supported beam. By demodulating the optical phase shift, the acceleration is determined as proportional to the force applied on the central position of the two single-mode fibers. This simple model is able to calculate the sensitivity and the resonant frequency of the compact accelerometer. The experimental results show that the sensitivity and the resonant frequency of the accelerometer are 0.42 rad/g and 600 Hz, respectively.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription