Abstract

A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription