Abstract

As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instability appears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator. In order to interpret this phenomenon, an output beam mode simulation code was developed with the fast Fourier transform method. The calculation results show that the presence of the nonuniform gain in COIL produces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermal expansion. With the output power of COIL increases, the mirror surfaces, especially the back surface of the scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beam spot seriously. The initial misalignment direction is an important factor for the far field beam spot drifting and deformation.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Yang, D. A. Copeland, A. H. Bauer, et al., in AIAA 97-2384, 28th Plasmadynamics and Lasers Conference, (1997).
  2. E. A. Sziklas and A. E. Siegman, Appl. Opt. 14, 1874 (1975).
  3. D. B. Rensch and A. N. Chester, Appl. Opt. 12, 997 (1973).
  4. J. R. Palmer, Opt. Eng. 22, 435 (1983).
  5. G. Koop, J. Hartlove, C. Clendening, et al., in AIAA 2000-2421, 31th Plasmadynamics and lasers Conference, (2000).
  6. H. E. Bennett and A. M. Khounsary, ANL/XFD/CP-811S2, CONQ 930722-53.
  7. S. J. Cohen, R. E. English, C. J. Stolz, et al., UCRL-JC-110937 (1992).
  8. L. P. Duo, B. L. Yang, F. T. Sang, et al., IEEE J. Q. E. 34, 1065 (1998).
  9. Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

1998 (1)

L. P. Duo, B. L. Yang, F. T. Sang, et al., IEEE J. Q. E. 34, 1065 (1998).

1995 (1)

Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

1983 (1)

J. R. Palmer, Opt. Eng. 22, 435 (1983).

1975 (1)

1973 (1)

Chester, A. N.

Duo, L. P.

L. P. Duo, B. L. Yang, F. T. Sang, et al., IEEE J. Q. E. 34, 1065 (1998).

Palmer, J. R.

J. R. Palmer, Opt. Eng. 22, 435 (1983).

Rensch, D. B.

Siegman, A. E.

Sziklas, E. A.

Wang, R. W.

Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

Wang, Z. J.

Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

Wei, Z. F.

Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

Appl. Opt. (2)

Chin. J. Lasers (in Chinese) (1)

Z. F. Wei, R. W. Wang, and Z. J. Wang, Chin. J. Lasers (in Chinese) 22, 881 (1995).

IEEE J. Q. E. (1)

L. P. Duo, B. L. Yang, F. T. Sang, et al., IEEE J. Q. E. 34, 1065 (1998).

Opt. Eng. (1)

J. R. Palmer, Opt. Eng. 22, 435 (1983).

Other (4)

G. Koop, J. Hartlove, C. Clendening, et al., in AIAA 2000-2421, 31th Plasmadynamics and lasers Conference, (2000).

H. E. Bennett and A. M. Khounsary, ANL/XFD/CP-811S2, CONQ 930722-53.

S. J. Cohen, R. E. English, C. J. Stolz, et al., UCRL-JC-110937 (1992).

T. T. Yang, D. A. Copeland, A. H. Bauer, et al., in AIAA 97-2384, 28th Plasmadynamics and Lasers Conference, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.