Abstract

We built a numerical model for evaluating the coupling processes of a mixed structure of a Bragg fiber grating and a long-period grating. From the numerical results, we not only confirmed the wavelength switching phenomena observed in previously reported experiments, but also discovered a new coupling mechanism, which generated the reflection of a signal with its wavelength longer than the Bragg wavelength. The dependencies of the wavelength switching behaviors on various parameters of the mixed grating structure were demonstrated. Such results should be useful for optimizing the design of such a potentially useful fiber component.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription