Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 9,
  • Issue 10,
  • pp. 100401-
  • (2011)

Theoretical optimization of the characteristics of ZnO metal-semiconductor-metal photodetectors

Not Accessible

Your library or personal account may give you access

Abstract

A two-dimensional model of a metal-semiconductor-metal (MSM) ZnO-based photodetector (PD) is developed. The PD is based on a drift diffusion model of a semiconductor that allows the calculation of potential distribution inside the structure, the transversal and longitudinal distributions of the electric field, and the distribution of carrier concentration. The ohmicity of the contact has been confirmed. The dark current of MSM PD based ZnO for different structural dimensions are likewise calculated. The calculations are comparable with the experimental results. Therefore, the influence with respect to parameters s (finger spacing) and w (finger width) is studied, which results in the optimization of these parameters. The best optimization found to concur with the experimental results is s = 16 \mu m, w = 16 \mu m, l = 250 \mu m, L = 350 \mu m, where l is the finger length and L is the length of the structure. This optimization provides a simulated dark current equal to 24.5 nA at the polarization of 3 V.

© 2011 Chinese Optics Letters

PDF Article
More Like This
Dark current suppression of MgZnO metal-semiconductor-metal solar-blind ultraviolet photodetector by asymmetric electrode structures

Ping Wang, Qinghong Zheng, Qing Tang, Yintang Yang, Lixin Guo, Feng Huang, Zhenjie Song, and Zhiyong Zhang
Opt. Lett. 39(2) 375-378 (2014)

Steady-state characteristics and transient response of MgZnO-based metal-semiconductor-metal solar-blind ultraviolet photodetector with three types of electrode structures

Ping Wang, Qinghong Zhen, Qing Tang, Yintang Yang, Lixin Guo, Kai Ding, and Feng Huang
Opt. Express 21(15) 18387-18397 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.