Abstract

Asymmetric broad-waveguide separate-confinement heterostructure (BW-SCH) quantum well (QW) laser diode emitting at 808 nm is analyzed and designed theoretically. The dependence of the optical field distribution, vertical far-field angle, and internal loss on different thicknesses of the upper waveguide layer is calculated and analyzed. Calculated results show that when the thicknesses of the lower and upper waveguide layers are 0.45 and 0.3 \mu m, respectively, for the devices with 100-\mu m-wide stripe and 1000-\mu m-long cavity, an output power of 7.6 W at 8 A, a vertical far-field angle of 37°, a slope efficiency of 1.32 W/A, and a threshold current of 189 mA can be obtained.

© 2010 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription