Abstract

An improved Pan-sharpening algorithm appropriate to vegetation applications is proposed to fusea set of IKONOS panchromatic (PAN) and multispectral image (MSI) data. The normalized difference vegetation index (NDVI) is introduced to evaluate the quality of fusion products. Compared with other methods such as principal component analysis (PCA), wavelet transform (WT), and curvelet transform (CT), this algorithm has a better trade-off between keeping the spatial and spectral information. The NDVI performances indicate that the fusion product of this method is more suitable for vegetation applications than the other methods.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription