Abstract

High power bottom-emitting In0.2Ga0.8As/GaAs 4*4 two-dimensional vertical-cavity surface-emitting laser (VCSEL) arrays, with high output power in the 980-nm wavelength regime are reported. At room temperature, the 16-element array with 200-micron aperture size of individual elements shows a continuous wave output power of 1.21 W with a lasing wavelength of 981.9 nm. Temperature dependent characteristics of VCSEL arrays with 90-micron aperture size of individual elements are investigated. The lasing wavelength, optical output power and threshold current are measured at various heatsink temperatures. With the increase of heatsink temperature, the maximum output power and slope efficiency are greatly decreased. A red shift of lasing wavelength and a widening of the lasing spectrum are also observed.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B Weigl, and K. J. Ebeling, Electron. Lett. 33, 330 (1997).
  2. M. C. Amann, M. Ortsiefer, R. Shau, and J. Robkopf, Proc. SPIE 4871, 123 (2002).
  3. Y. Ma, C. Wang, and T. Miao, Optics and Precision Engineering (in Chinese) 13, 253 (2005).
  4. P. Lan, Y. chen, K. Huang, H. Lai, and J. Pan, IEEE Photon. Technol. Lett. 14, 272 (2002).
  5. M. Grabherr, B. Weigl, G. Reiner, R. Michalzik, M. Miller, and K. J. Ebeling, Electron. Lett. 32, 1723 (1996).
  6. M. Miller, M. Grabherr, R. King, R. Jager, R. Michalzik, and K. J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 7, 210 (2001).
  7. L. A. D'Asaro, J.-F. Seurin, and J. D. Wynn, Photonics Spectra 39, 64 (2005).
  8. T. Li, Y. Ning, Y. Sun, Z. Jin, Y. Liu, and L. Wang, Proc. SPIE 6028, 602816 (2006).

2006 (1)

T. Li, Y. Ning, Y. Sun, Z. Jin, Y. Liu, and L. Wang, Proc. SPIE 6028, 602816 (2006).

2005 (2)

L. A. D'Asaro, J.-F. Seurin, and J. D. Wynn, Photonics Spectra 39, 64 (2005).

Y. Ma, C. Wang, and T. Miao, Optics and Precision Engineering (in Chinese) 13, 253 (2005).

2002 (2)

P. Lan, Y. chen, K. Huang, H. Lai, and J. Pan, IEEE Photon. Technol. Lett. 14, 272 (2002).

M. C. Amann, M. Ortsiefer, R. Shau, and J. Robkopf, Proc. SPIE 4871, 123 (2002).

2001 (1)

M. Miller, M. Grabherr, R. King, R. Jager, R. Michalzik, and K. J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 7, 210 (2001).

1997 (1)

R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B Weigl, and K. J. Ebeling, Electron. Lett. 33, 330 (1997).

1996 (1)

M. Grabherr, B. Weigl, G. Reiner, R. Michalzik, M. Miller, and K. J. Ebeling, Electron. Lett. 32, 1723 (1996).

Electron. Lett. (2)

R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B Weigl, and K. J. Ebeling, Electron. Lett. 33, 330 (1997).

M. Grabherr, B. Weigl, G. Reiner, R. Michalzik, M. Miller, and K. J. Ebeling, Electron. Lett. 32, 1723 (1996).

IEEE J. Sel. Top. Quantum Electron. (1)

M. Miller, M. Grabherr, R. King, R. Jager, R. Michalzik, and K. J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 7, 210 (2001).

IEEE Photon. Technol. Lett. (1)

P. Lan, Y. chen, K. Huang, H. Lai, and J. Pan, IEEE Photon. Technol. Lett. 14, 272 (2002).

Optics and Precision Engineering (in Chinese) (1)

Y. Ma, C. Wang, and T. Miao, Optics and Precision Engineering (in Chinese) 13, 253 (2005).

Photonics Spectra (1)

L. A. D'Asaro, J.-F. Seurin, and J. D. Wynn, Photonics Spectra 39, 64 (2005).

Proc. SPIE (2)

T. Li, Y. Ning, Y. Sun, Z. Jin, Y. Liu, and L. Wang, Proc. SPIE 6028, 602816 (2006).

M. C. Amann, M. Ortsiefer, R. Shau, and J. Robkopf, Proc. SPIE 4871, 123 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.