Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 3,
  • Issue 3,
  • pp. 179-180
  • (2005)

Damage on HfO2/SiO2 high-reflecting coatings under single and multiple Nd:YAG laser pulse irradiation

Not Accessible

Your library or personal account may give you access

Abstract

The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.

© 2005 Chinese Optics Letters

PDF Article
More Like This
Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface

Xinbin Cheng, Hongfei Jiao, Jiangtao Lu, Bin Ma, and Zhanshan Wang
Opt. Express 21(12) 14867-14875 (2013)

Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm

Wenwen Liu, Chaoyang Wei, Jianbo Wu, Zhenkun Yu, Hui Cui, Kui Yi, and Jianda Shao
Opt. Express 21(19) 22476-22487 (2013)

Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector

Lei Yuan, Yuanan Zhao, Guangqiang Shang, Chengren Wang, Hongbo He, Jianda Shao, and Zhengxiu Fan
J. Opt. Soc. Am. B 24(3) 538-543 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved