Abstract

Lithium niobate (LiNbO3) is a versatile crystalline material for various photonic applications. With the recent advances in LiNbO3-on-insulator (LNOI) thin film technology, LiNbO3 has been regarded as one of the most promising platforms for multi-functional integrated photonics. In this work, we present the field enhancement due to collective resonances in arrayed LiNbO3 nanoantennas. These resonances arise from the enhanced radiative coupling of localized Mie resonances in the individual nanoparticles and Rayleigh anomalies due to in-plane diffraction orders of the lattice. We describe the pronounced differences in field enhancement and field distributions for electric and magnetic dipoles, offering valuable information for the design and optimization of high-quality-factor optical metasurfaces based on LiNbO3.

© 2021 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription