Abstract

Conventional line-of-sight underwater wireless optical communication (UWOC) links suffer from huge signal fading in the presence of oceanic turbulence due to misalignment, which is caused by variations in the refractive index in the water. Non-line-of-sight (NLOS) communication, a novel underwater communication configuration, which has eased the requirements on the alignment, is supposed to enhance the robustness of the UWOC links in the presence of such turbulence. This Letter experimentally and statistically studies the impact of turbulence that arises from temperature gradient variations and the presence of different air bubble populations on NLOS optical channels. The results suggest that temperature gradient-induced turbulence causes negligible signal fading to the NLOS link. Furthermore, the presence of air bubbles with different populations and sizes can enhance the received signal power by seizing the scattering phenomena from an ultraviolet 377 nm laser diode.

© 2019 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription