Abstract

We have proposed and developed a design method of a freeform surfaces (FFSs) based hyper-numerical-aperture deep ultraviolet (DUV) projection objective (PO) with low aberration. With an aspheric initial configuration, lens-form parameters were used to determine the best position to remove elements and insert FFSs. The designed FFSs PO reduced two elements without increasing the total thickness of the glass materials. Compared with aspheric initial configuration, the wavefront error of the FFSs PO decreased from 0.006λ to 0.005λ, the distortion reduced from 1 to 0.5 nm, and the aspheric departure decreased from 1.7 to 1.35 mm. The results show that the design method of the FFSs PO is efficient and has improved the imaging performance of PO. The design method of FFSs PO provides potential solutions for DUV lithography with low aberrations at 10–5 nm nodes.

© 2018 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription