Abstract

We investigate the linear momentum density of light, which can be decomposed into spin and orbital parts, in the complex three-dimensional field distributions of tightly focused vortex segmented beams. The chosen angular spectrum exhibits two spatially separated vortices of opposite charge and orthogonal circular polarization to generate phase vortices in a meridional plane of observation. In the vicinity of those vortices, regions of negative orbital linear momentum occur. Besides these phase vortices, the occurrence of transverse orbital angular momentum manifests in a vortex charge-dependent relative shift of the energy density and linear momentum density.

© 2017 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription