Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 15,
  • Issue 11,
  • pp. 110602-
  • (2017)

High OSNR and simple configuration dual-wavelength fiber laser with wide tunability in S+C+L band

Not Accessible

Your library or personal account may give you access

Abstract

A simple configuration dual-wavelength fiber laser, by combining the first-order Brillouin laser and the residual pump laser, is proposed and experimentally demonstrated. A 1 km long single-mode fiber is used as the stimulated Brillouin scattering gain medium pumped by a narrow linewidth tunable laser source (TLS). Through simply adjusting the TLS output power, power-equalized dual-wavelength lasing can be achieved with a high optical signal to noise ratio (OSNR) of >80 dB. With the good tunability of the TLS, the dual-wavelength fiber laser has a tunable range of ∼130 nm, and simultaneously the beat frequency of the two lasing wavelengths can be tuned from 10.1875 to 11.0815 GHz with the tunable range of 0.8940 GHz. The high stability of the dual-wavelength operation is experimentally verified by the measured beat frequency fluctuation of ≤6 MHz in 1 h and power fluctuation of ≤0.03 dB in 2 h. The temporal characteristics of the fiber laser are also investigated experimentally. The fiber laser will find good applications in fiber sensing and microwave photonics areas.

© 2017 Chinese Laser Press

PDF Article
More Like This
Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

Wide tuning range and high OSNR self-seeded multi-wavelength Brillouin-erbium fiber laser based on a Lyot filter

Qi Zhao, Li Pei, Liangying Wu, Tigang Ning, Jingjing Zheng, and Jing Li
Appl. Opt. 57(36) 10474-10479 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.