Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 6,
  • pp. 060602-
  • (2016)

Reduction of FWM noise in WDM-based QKD systems using interleaved and unequally spaced channels

Not Accessible

Your library or personal account may give you access

Abstract

To extensively deploy quantum key distribution (QKD) systems, copropagating with classical channels on the same fiber using wavelength division multiplexing (WDM) technology becomes a critical issue. We propose a user-based channel-interleaving WDM scheme with unequal frequency spacing (UFS-iWDM) to reduce the impairment on the quantum channels induced by four-wave mixing (FWM), and theoretically analyze its impact on quantum bit error rate (QBER). Numerical simulation results show that a UFS-iWDM can significantly reduce the FWM noise and improve QBER compared with the corresponding WDM scheme with equal frequency spacing (EFS), especially in the case of nonzero dispersion shifted fiber.

© 2016 Chinese Laser Press

PDF Article
More Like This
Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system

Jia-Ning Niu, Yong-Mei Sun, Chun Cai, and Yue-Feng Ji
Appl. Opt. 57(27) 7987-7996 (2018)

Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks

Yuan Cao, Yongli Zhao, Jianquan Wang, Xiaosong Yu, Zhangchao Ma, and Jie Zhang
J. Opt. Commun. Netw. 11(6) 285-298 (2019)

Quantum key distribution on a 10Gb/s WDM-PON

Iris Choi, Robert J. Young, and Paul D. Townsend
Opt. Express 18(9) 9600-9612 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.