Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 4,
  • pp. 043101-
  • (2016)

Molybdenum thin films fabricated by rf and dc sputtering for Cu(In,Ga)Se2 solar cell applications

Not Accessible

Your library or personal account may give you access

Abstract

Molybdenum (Mo) thin films, most commonly used as electrical back contacts in Cu(In,Ga)Se2 (CIGS) solar cells, are deposited by rf and dc magnetron sputtering in identical systems to study the discrepancy and growth mechanisms of the two sputtering techniques. The results reveal that though different techniques generally deposit films with different characteristic properties, Mo films with similar structural and physical properties can be obtained at respective suitable deposition conditions. Highly adhesive and conductive Mo films on soda lime glass are further optimized, and the as-fabricated solar cells reach efficiencies as high as 9.4% and 9.1% without an antireflective layer.

© 2016 Chinese Laser Press

PDF Article
More Like This
Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate

Shenglin Ye, Xiaohui Tan, Minlin Jiang, Bin Fan, Ken Tang, and Songlin Zhuang
Appl. Opt. 49(9) 1662-1665 (2010)

Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se2/ZnS thin film solar cells

Xiao-Hui Tan, Yu Chen, and Ye-Xiang Liu
Appl. Opt. 53(15) 3273-3277 (2014)

Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se2 thin film solar cells

Yi-Chih Wang, Bing-Yi Lin, Po-Tsun Liu, and Han-Ping D. Shieh
Opt. Express 22(S1) A13-A20 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.