Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 2,
  • pp. 021402-
  • (2016)

Ringing phenomenon in a high-Q fiber bottle microresonator

Not Accessible

Your library or personal account may give you access

Abstract

It is demonstrated that high-Q (Q∼108) bottle microresonators can be fabricated by using a CO2 laser to heat a vertical single-mode fiber with a small weight attached to its lower end. A tunable continuous-wave laser is used to excite whispering-gallery modes in a bottle microresonator through a fiber taper, and a ringing phenomenon is observed. The observed ringing phenomenon is well explained through the numerical solution of a dynamic equation. In addition, an explicit function is given to describe the light field in the resonator, and the theoretical transmission based on the function also agrees very well with the experimental ringing phenomenon.

© 2016 Chinese Laser Press

PDF Article
More Like This
Hollow-bottle optical microresonators

G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas
Opt. Express 19(21) 20773-20784 (2011)

Selective excitation of whispering gallery modes in a novel bottle microresonator

Ganapathy Senthil Murugan, James S. Wilkinson, and Michalis N. Zervas
Opt. Express 17(14) 11916-11925 (2009)

Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators

Fuming Xie, Ni Yao, Wei Fang, Haifeng Wang, Fuxing Gu, and Songlin Zhuang
Photon. Res. 5(6) B29-B33 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.