Abstract

Fiber nonlinearity limits the use of coherent optical orthogonal frequency division multiplexing (CO-OFDM) to upgrade wavelength-division multiplexing (WDM) systems using legacy non-return-to-zero-on-off-keying (NRZ-OOK) channels. This letter proposes to compensate for the fiber nonlinearity of CO-OFDM with NRZ-OOK neighbors by combining digital signal processing (DSP)-based self-phase modulation (SPM) post-compensation with pilot-tone-based cross-phase modulation (XPM) compensation. The simulation results demonstrate that the optimum low-pass filter bandwidth for pilot-tone-based XPM compensation depends on the pilot-to-signal ratio value and launch optical power. Our method allows a 4-dB increase in the launch power for a 40-Gb/s single polarization CO-OFDM channel placed in the middle of six 10.7-Gb/s NRZ channels in a 50-GHz space and 1 200-km WDM system.

© 2012 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription