Abstract

In this paper, we discuss what causes the superluminal propagation of a pulse through dispersion by solving Maxwell's equations without any approximation. The coherence of the pulse plays an important role for superluminal propagation. When the pulse becomes partially coherent, the propagation changes from superluminal to subluminal. The energy velocity is always less than the vacuum velocity. The shape of the pulse is changed during the propagation.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. R. Y. Chiao and A. M. Steinberg, Tunneling Time and Superluminality, Progress in Optics XXXVII, 345, E. Wolf ed. (Elsevier, 1997), and references therein.
  2. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).
  3. G. Nimtz, Ann. Phys. (Leipzig) 7, 618 (1998).
  4. P. Sprangle, J. R. Penao, and B. Hafizi, Phys. Rev. E 64, 026504 (2001).
  5. C. G. Huang and Y. Z. Zhang, J. Opt. A: Pure Appl. Opt. 4, 1 (2002).
  6. F. J. Ribeiro and M. L. Cohen, Phys. Rev. E 64, 046602 (2001).
  7. J. Marangos, Nature 406, 243 (2000).
  8. A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
  10. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed., (Cambridge University Press, Cambridge, 1999).
  11. L. Sereda, M. Bertolotti, and A. Ferrari, J. Opt. Soc. Am. A 15, 695 (1998), and references therein.
  12. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).

2002

C. G. Huang and Y. Z. Zhang, J. Opt. A: Pure Appl. Opt. 4, 1 (2002).

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).

2001

P. Sprangle, J. R. Penao, and B. Hafizi, Phys. Rev. E 64, 026504 (2001).

A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).

F. J. Ribeiro and M. L. Cohen, Phys. Rev. E 64, 046602 (2001).

2000

J. Marangos, Nature 406, 243 (2000).

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).

1998

G. Nimtz, Ann. Phys. (Leipzig) 7, 618 (1998).

Ann. Phys. (Leipzig)

G. Nimtz, Ann. Phys. (Leipzig) 7, 618 (1998).

J. Opt. A: Pure Appl. Opt.

C. G. Huang and Y. Z. Zhang, J. Opt. A: Pure Appl. Opt. 4, 1 (2002).

Nature

L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).

J. Marangos, Nature 406, 243 (2000).

Opt. Commun.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).

Phys. Rev. A

A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).

Phys. Rev. E

P. Sprangle, J. R. Penao, and B. Hafizi, Phys. Rev. E 64, 026504 (2001).

F. J. Ribeiro and M. L. Cohen, Phys. Rev. E 64, 046602 (2001).

Other

R. Y. Chiao and A. M. Steinberg, Tunneling Time and Superluminality, Progress in Optics XXXVII, 345, E. Wolf ed. (Elsevier, 1997), and references therein.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed., (Cambridge University Press, Cambridge, 1999).

L. Sereda, M. Bertolotti, and A. Ferrari, J. Opt. Soc. Am. A 15, 695 (1998), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.