M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract. 20(5), 397–415 (2011).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, “Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis,” Biochem. Biophys. Res. Commun. 448(4), 461–466 (2014).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
A. Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, and D. J. Creek, “Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks,” Bioanalysis 6(4), 511–524 (2014).
[Crossref]
[PubMed]
K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[Crossref]
[PubMed]
C. Jose, N. Bellance, and R. Rossignol, “Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma?” Biochim. Biophys. Acta 1807(6), 552–561 (2011).
[Crossref]
[PubMed]
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract. 20(5), 397–415 (2011).
[Crossref]
[PubMed]
K. Glunde and Z. M. Bhujwalla, “Metabolic tumor imaging using magnetic resonance spectroscopy,” Semin. Oncol. 38(1), 26–41 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
A. Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, and D. J. Creek, “Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks,” Bioanalysis 6(4), 511–524 (2014).
[Crossref]
[PubMed]
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
J. Kahn, P. J. Tofilon, and K. Camphausen, “Preclinical models in radiation oncology,” Radiat. Oncol. 7(1), 223 (2012).
[Crossref]
[PubMed]
M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
A. Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, and D. J. Creek, “Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks,” Bioanalysis 6(4), 511–524 (2014).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
C. Constantinides, R. Mean, and B. J. Janssen, “Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse,” ILAR J. 52(3), e21–e31 (2011).
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
P. E. Porporato, S. Dhup, R. K. Dadhich, T. Copetti, and P. Sonveaux, “Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review,” Front. Pharmacol. 2, 49 (2011).
[Crossref]
[PubMed]
A. Viale, D. Corti, and G. F. Draetta, “Tumors and mitochondrial respiration: a neglected connection,” Cancer Res. 75(18), 3685–3687 (2015).
[Crossref]
[PubMed]
A. Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, and D. J. Creek, “Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks,” Bioanalysis 6(4), 511–524 (2014).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
S. P. M. Crouch, R. Kozlowski, K. J. Slater, and J. Fletcher, “The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity,” J. Immunol. Methods 160(1), 81–88 (1993).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
P. E. Porporato, S. Dhup, R. K. Dadhich, T. Copetti, and P. Sonveaux, “Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review,” Front. Pharmacol. 2, 49 (2011).
[Crossref]
[PubMed]
Z. Dai, A. A. Shestov, L. Lai, and J. W. Locasale, “A flux balance of glucose metabolism clarifies the requirements of the Warburg effect,” Biophys. J. 111(5), 1088–1100 (2016).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[Crossref]
[PubMed]
M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
P. E. Porporato, S. Dhup, R. K. Dadhich, T. Copetti, and P. Sonveaux, “Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review,” Front. Pharmacol. 2, 49 (2011).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
A. Viale, D. Corti, and G. F. Draetta, “Tumors and mitochondrial respiration: a neglected connection,” Cancer Res. 75(18), 3685–3687 (2015).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]
J. F. Eary and D. A. Mankoff, “Tumor metabolic rates in sarcoma using FDG PET,” J. Nucl. Med. 39(2), 250–254 (1998).
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
T. Epstein, L. Xu, R. J. Gillies, and R. A. Gatenby, “Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane,” Cancer Metab. 2(1), 7 (2014).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
S. P. M. Crouch, R. Kozlowski, K. J. Slater, and J. Fletcher, “The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity,” J. Immunol. Methods 160(1), 81–88 (1993).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. 1(1), 27–30 (1995).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
N. Rajaram, A. F. Reesor, C. S. Mulvey, A. E. Frees, and N. Ramanujam, “Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue,” PLoS One 10(1), e0117132 (2015).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
T. Epstein, L. Xu, R. J. Gillies, and R. A. Gatenby, “Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane,” Cancer Metab. 2(1), 7 (2014).
[Crossref]
[PubMed]
R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nat. Rev. Cancer 4(11), 891–899 (2004).
[Crossref]
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
T. Epstein, L. Xu, R. J. Gillies, and R. A. Gatenby, “Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane,” Cancer Metab. 2(1), 7 (2014).
[Crossref]
[PubMed]
R. J. Gillies and D. L. Morse, “In vivo magnetic resonance spectroscopy in cancer,” Annu. Rev. Biomed. Eng. 7(1), 287–326 (2005).
[Crossref]
[PubMed]
R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nat. Rev. Cancer 4(11), 891–899 (2004).
[Crossref]
[PubMed]
K. Glunde and Z. M. Bhujwalla, “Metabolic tumor imaging using magnetic resonance spectroscopy,” Semin. Oncol. 38(1), 26–41 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
H. Wu, A. D. Southam, A. Hines, and M. R. Viant, “High-throughput tissue extraction protocol for NMR- and MS-based metabolomics,” Anal. Biochem. 372(2), 204–212 (2008).
[Crossref]
[PubMed]
P. Vaupel, A. Mayer, and M. Höckel, “Tumor hypoxia and malignant progression,” Methods Enzymol. 381, 335–354 (2004).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
I. J. Hoogsteen, H. A. Marres, A. J. van der Kogel, and J. H. A. M. Kaanders, “The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments,” Clin. Oncol. (R Coll Radiol) 19(6), 385–396 (2007).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
J. P. B. O’Connor, A. Jackson, G. J. M. Parker, and G. C. Jayson, “DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents,” Br. J. Cancer 96(2), 189–195 (2007).
[Crossref]
[PubMed]
M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiol. Rev. 92(2), 897–965 (2012).
[Crossref]
[PubMed]
C. Constantinides, R. Mean, and B. J. Janssen, “Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse,” ILAR J. 52(3), e21–e31 (2011).
[PubMed]
J. P. B. O’Connor, A. Jackson, G. J. M. Parker, and G. C. Jayson, “DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents,” Br. J. Cancer 96(2), 189–195 (2007).
[Crossref]
[PubMed]
M. Mehrmohamadi, S. H. Jeong, and J. W. Locasale, “Molecular features that predict the response to antimetabolite chemotherapies,” Cancer Metab. 5(1), 8 (2017).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
C. Jose, N. Bellance, and R. Rossignol, “Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma?” Biochim. Biophys. Acta 1807(6), 552–561 (2011).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
I. J. Hoogsteen, H. A. Marres, A. J. van der Kogel, and J. H. A. M. Kaanders, “The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments,” Clin. Oncol. (R Coll Radiol) 19(6), 385–396 (2007).
[Crossref]
[PubMed]
J. Kahn, P. J. Tofilon, and K. Camphausen, “Preclinical models in radiation oncology,” Radiat. Oncol. 7(1), 223 (2012).
[Crossref]
[PubMed]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
A. Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, and D. J. Creek, “Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks,” Bioanalysis 6(4), 511–524 (2014).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
S. P. M. Crouch, R. Kozlowski, K. J. Slater, and J. Fletcher, “The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity,” J. Immunol. Methods 160(1), 81–88 (1993).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
Z. Dai, A. A. Shestov, L. Lai, and J. W. Locasale, “A flux balance of glucose metabolism clarifies the requirements of the Warburg effect,” Biophys. J. 111(5), 1088–1100 (2016).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Cancer metabolism: a therapeutic perspective,” Nat. Rev. Clin. Oncol. 14(2), 113 (2017).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
X. Liu, Z. Ser, and J. W. Locasale, “Development and quantitative evaluation of a high-resolution metabolomics technology,” Anal. Chem. 86(4), 2175–2184 (2014).
[Crossref]
[PubMed]
M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract. 20(5), 397–415 (2011).
[Crossref]
[PubMed]
M. Mehrmohamadi, S. H. Jeong, and J. W. Locasale, “Molecular features that predict the response to antimetabolite chemotherapies,” Cancer Metab. 5(1), 8 (2017).
[Crossref]
[PubMed]
Z. Dai, A. A. Shestov, L. Lai, and J. W. Locasale, “A flux balance of glucose metabolism clarifies the requirements of the Warburg effect,” Biophys. J. 111(5), 1088–1100 (2016).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
X. Liu, Z. Ser, and J. W. Locasale, “Development and quantitative evaluation of a high-resolution metabolomics technology,” Anal. Chem. 86(4), 2175–2184 (2014).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
J. F. Eary and D. A. Mankoff, “Tumor metabolic rates in sarcoma using FDG PET,” J. Nucl. Med. 39(2), 250–254 (1998).
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
I. J. Hoogsteen, H. A. Marres, A. J. van der Kogel, and J. H. A. M. Kaanders, “The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments,” Clin. Oncol. (R Coll Radiol) 19(6), 385–396 (2007).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
U. E. Martinez-Outschoorn, M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Cancer metabolism: a therapeutic perspective,” Nat. Rev. Clin. Oncol. 14(2), 113 (2017).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
P. Vaupel, A. Mayer, and M. Höckel, “Tumor hypoxia and malignant progression,” Methods Enzymol. 381, 335–354 (2004).
[Crossref]
[PubMed]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
C. Constantinides, R. Mean, and B. J. Janssen, “Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse,” ILAR J. 52(3), e21–e31 (2011).
[PubMed]
M. Mehrmohamadi, S. H. Jeong, and J. W. Locasale, “Molecular features that predict the response to antimetabolite chemotherapies,” Cancer Metab. 5(1), 8 (2017).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
A. Welch, M. Mingarelli, G. Riedel, and B. Platt, “Mapping changes in mouse brain metabolism with PET/CT,” J. Nucl. Med. 54(11), 1946–1953 (2013).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
M. W. Dewhirst, Y. Cao, and B. Moeller, “Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response,” Nat. Rev. Cancer 8(6), 425–437 (2008).
[Crossref]
[PubMed]
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
R. J. Gillies and D. L. Morse, “In vivo magnetic resonance spectroscopy in cancer,” Annu. Rev. Biomed. Eng. 7(1), 287–326 (2005).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
N. Rajaram, A. F. Reesor, C. S. Mulvey, A. E. Frees, and N. Ramanujam, “Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue,” PLoS One 10(1), e0117132 (2015).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
O. Warburg, K. Posener, and E. Negelein, “On the metabolism of carcinoma cells,” Biochem. Z. 152, 309–344 (1924).
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
J. P. B. O’Connor, A. Jackson, G. J. M. Parker, and G. C. Jayson, “DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents,” Br. J. Cancer 96(2), 189–195 (2007).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, “Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis,” Biochem. Biophys. Res. Commun. 448(4), 461–466 (2014).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13(2), 024017 (2008).
[Crossref]
[PubMed]
J. P. B. O’Connor, A. Jackson, G. J. M. Parker, and G. C. Jayson, “DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents,” Br. J. Cancer 96(2), 189–195 (2007).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Cancer metabolism: a therapeutic perspective,” Nat. Rev. Clin. Oncol. 14(2), 113 (2017).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Cancer metabolism: a therapeutic perspective,” Nat. Rev. Clin. Oncol. 14(2), 113 (2017).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
A. Welch, M. Mingarelli, G. Riedel, and B. Platt, “Mapping changes in mouse brain metabolism with PET/CT,” J. Nucl. Med. 54(11), 1946–1953 (2013).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
P. E. Porporato, S. Dhup, R. K. Dadhich, T. Copetti, and P. Sonveaux, “Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review,” Front. Pharmacol. 2, 49 (2011).
[Crossref]
[PubMed]
O. Warburg, K. Posener, and E. Negelein, “On the metabolism of carcinoma cells,” Biochem. Z. 152, 309–344 (1924).
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
X. Lu, B. Bennet, E. Mu, J. Rabinowitz, and Y. Kang, “Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model,” J. Biol. Chem. 285(13), 9317–9321 (2010).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
N. Rajaram, A. F. Reesor, C. S. Mulvey, A. E. Frees, and N. Ramanujam, “Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue,” PLoS One 10(1), e0117132 (2015).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
N. Rajaram, A. F. Reesor, C. S. Mulvey, A. E. Frees, and N. Ramanujam, “Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue,” PLoS One 10(1), e0117132 (2015).
[Crossref]
[PubMed]
A. E. Frees, N. Rajaram, S. S. McCachren, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer,” PLoS One 9(12), e115529 (2014).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[Crossref]
[PubMed]
G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13(2), 024017 (2008).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
N. Rajaram, A. F. Reesor, C. S. Mulvey, A. E. Frees, and N. Ramanujam, “Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue,” PLoS One 10(1), e0117132 (2015).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
A. Welch, M. Mingarelli, G. Riedel, and B. Platt, “Mapping changes in mouse brain metabolism with PET/CT,” J. Nucl. Med. 54(11), 1946–1953 (2013).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
C. Jose, N. Bellance, and R. Rossignol, “Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma?” Biochim. Biophys. Acta 1807(6), 552–561 (2011).
[Crossref]
[PubMed]
A. Carcereri de Prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin, D. Boriero, and S. Mariotto, “Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia,” J. Cell. Biochem. 118(10), 3237–3248 (2017).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, “Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis,” Biochem. Biophys. Res. Commun. 448(4), 461–466 (2014).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
X. Liu, Z. Ser, and J. W. Locasale, “Development and quantitative evaluation of a high-resolution metabolomics technology,” Anal. Chem. 86(4), 2175–2184 (2014).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
C. Y. Li, S. Shan, Q. Huang, R. D. Braun, J. Lanzen, K. Hu, P. Lin, and M. W. Dewhirst, “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” J. Natl. Cancer Inst. 92(2), 143–147 (2000).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
Z. Dai, A. A. Shestov, L. Lai, and J. W. Locasale, “A flux balance of glucose metabolism clarifies the requirements of the Warburg effect,” Biophys. J. 111(5), 1088–1100 (2016).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
S. P. M. Crouch, R. Kozlowski, K. J. Slater, and J. Fletcher, “The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity,” J. Immunol. Methods 160(1), 81–88 (1993).
[Crossref]
[PubMed]
M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract. 20(5), 397–415 (2011).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
P. E. Porporato, S. Dhup, R. K. Dadhich, T. Copetti, and P. Sonveaux, “Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review,” Front. Pharmacol. 2, 49 (2011).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Cancer metabolism: a therapeutic perspective,” Nat. Rev. Clin. Oncol. 14(2), 113 (2017).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
H. Wu, A. D. Southam, A. Hines, and M. R. Viant, “High-throughput tissue extraction protocol for NMR- and MS-based metabolomics,” Anal. Biochem. 372(2), 204–212 (2008).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O’shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, and D. C. Sullivan, “Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development,” Clin. Cancer Res. 11(8), 2785–2808 (2005).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, “Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis,” Biochem. Biophys. Res. Commun. 448(4), 461–466 (2014).
[Crossref]
[PubMed]
V. Chen, R. E. Staub, S. Fong, M. Tagliaferri, I. Cohen, and E. Shtivelman, “Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS,” PLoS One 7(2), e30300 (2012).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
R. Alonzi, A. R. Padhani, N. J. Taylor, D. J. Collins, J. A. D’Arcy, J. J. Stirling, M. I. Saunders, and P. J. Hoskin, “Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI,” Int. J. Radiat. Oncol. Biol. Phys. 80(3), 721–727 (2011).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
R. V. Simões, I. S. Serganova, N. Kruchevsky, A. Leftin, A. A. Shestov, H. T. Thaler, G. Sukenick, J. W. Locasale, R. G. Blasberg, J. A. Koutcher, and E. Ackerstaff, “Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment,” Neoplasia 17(8), 671–684 (2015).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
N. J. Taylor, H. Baddeley, K. A. Goodchild, M. E. B. Powell, M. Thoumine, L. A. Culver, J. J. Stirling, M. I. Saunders, P. J. Hoskin, H. Phillips, A. R. Padhani, and J. R. Griffiths, “BOLD MRI of human tumor oxygenation during carbogen breathing,” J. Magn. Reson. Imaging 14(2), 156–163 (2001).
[Crossref]
[PubMed]
J. Kahn, P. J. Tofilon, and K. Camphausen, “Preclinical models in radiation oncology,” Radiat. Oncol. 7(1), 223 (2012).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
M. N. Loja, Z. Luo, D. Greg Farwell, Q. C. Luu, P. J. Donald, D. Amott, A. Q. Truong, R. F. Gandour-Edwards, and N. Nitin, “Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer,” Int. J. Cancer 132(7), 1613–1623 (2013).
[Crossref]
[PubMed]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
I. J. Hoogsteen, H. A. Marres, A. J. van der Kogel, and J. H. A. M. Kaanders, “The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments,” Clin. Oncol. (R Coll Radiol) 19(6), 385–396 (2007).
[Crossref]
[PubMed]
P. Vaupel, A. Mayer, and M. Höckel, “Tumor hypoxia and malignant progression,” Methods Enzymol. 381, 335–354 (2004).
[Crossref]
[PubMed]
P. E. Porporato, V. L. Payen, J. Pérez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhup, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Gallez, and P. Sonveaux, “A mitochondrial switch promotes tumor metastasis,” Cell Reports 8(3), 754–766 (2014).
[Crossref]
[PubMed]
A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nat. Protoc. 3(6), 965–976 (2008).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
A. Viale, D. Corti, and G. F. Draetta, “Tumors and mitochondrial respiration: a neglected connection,” Cancer Res. 75(18), 3685–3687 (2015).
[Crossref]
[PubMed]
H. Wu, A. D. Southam, A. Hines, and M. R. Viant, “High-throughput tissue extraction protocol for NMR- and MS-based metabolomics,” Anal. Biochem. 372(2), 204–212 (2008).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
I. Serganova, A. Rizwan, X. Ni, S. B. Thakur, J. Vider, J. Russell, R. Blasberg, and J. A. Koutcher, “Metabolic imaging: a link between lactate dehydrogenase a, lactate, and tumor phenotype,” Clin. Cancer Res. 17(19), 6250–6261 (2011).
[Crossref]
[PubMed]
G. M. Palmer, R. J. Boruta, B. L. Viglianti, L. Lan, I. Spasojevic, and M. W. Dewhirst, “Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy,” J. Control. Release 142(3), 457–464 (2010).
[Crossref]
[PubMed]
C. B. Liu, N. Rajaram, K. Vishwanath, T. Jiang, G. M. Palmer, and N. Ramanujam, “Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model,” J. Biomed. Opt. 17, 078003 (2012).
J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref]
[PubMed]
K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[Crossref]
[PubMed]
A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref]
[PubMed]
A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. S. Knudsen, A. Howell, R. G. Pestell, F. Sotgia, and M. P. Lisanti, “Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics,” Cell Cycle 10(8), 1271–1286 (2011).
[Crossref]
[PubMed]
H. Qiao, J. Li, Y. Chen, D. Wang, J. Han, M. Mei, and D. Li, “A study of the metabolism of transplanted tumor in the lung by micro PET/CT in mice,” Med. Eng. Phys. 36(3), 294–299 (2014).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
O. Warburg, K. Posener, and E. Negelein, “On the metabolism of carcinoma cells,” Biochem. Z. 152, 309–344 (1924).
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
S. Y. Wang, Y. H. Wei, D. B. Shieh, L. L. Lin, S. P. Cheng, P. W. Wang, and J. H. Chuang, “2-Deoxy-d-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells,” PLoS One 10(7), e0130959 (2015).
[Crossref]
[PubMed]
A. Welch, M. Mingarelli, G. Riedel, and B. Platt, “Mapping changes in mouse brain metabolism with PET/CT,” J. Nucl. Med. 54(11), 1946–1953 (2013).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
M. Fuss, F. Wenz, M. Essig, M. Muenter, J. Debus, T. S. Herman, and M. Wannenmacher, “Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy,” Int. J. Radiat. Oncol. Biol. Phys. 51(2), 478–482 (2001).
[Crossref]
[PubMed]
M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref]
[PubMed]
L. Shen, J. M. O’Shea, M. R. Kaadige, S. Cunha, B. R. Wilde, A. L. Cohen, A. L. Welm, and D. E. Ayer, “Metabolic reprogramming in triple-negative breast cancer through MYC suppression of TXNIP,” Proc. Natl. Acad. Sci. U.S.A. 112(17), 5425–5430 (2015).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
G. Fluegen, A. Avivar-Valderas, Y. Wang, M. R. Padgen, J. K. Williams, A. R. Nobre, V. Calvo, J. F. Cheung, J. J. Bravo-Cordero, D. Entenberg, J. Castracane, V. Verkhusha, P. J. Keely, J. Condeelis, and J. A. Aguirre-Ghiso, “Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments,” Nat. Cell Biol. 19(2), 120–132 (2017).
[Crossref]
[PubMed]
E. J. Want, P. Masson, F. Michopoulos, I. D. Wilson, G. Theodoridis, R. S. Plumb, J. Shockcor, N. Loftus, E. Holmes, and J. K. Nicholson, “Global metabolic profiling of animal and human tissues via UPLC-MS,” Nat. Protoc. 8(1), 17–32 (2012).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
B. Huang, P. L. Khong, D. L. W. Kwong, B. Hung, C. S. Wong, and C. Y. O. Wong, “Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods,” Nucl. Med. Commun. 33(2), 191–197 (2012).
[Crossref]
[PubMed]
J. Hou, H. J. Wright, N. Chan, R. Tran, O. V. Razorenova, E. O. Potma, and B. J. Tromberg, “Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption,” J. Biomed. Opt. 21(6), 060503 (2016).
[Crossref]
[PubMed]
H. Wu, A. D. Southam, A. Hines, and M. R. Viant, “High-throughput tissue extraction protocol for NMR- and MS-based metabolomics,” Anal. Biochem. 372(2), 204–212 (2008).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
T. Epstein, L. Xu, R. J. Gillies, and R. A. Gatenby, “Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane,” Cancer Metab. 2(1), 7 (2014).
[Crossref]
[PubMed]
K. Tanimoto, K. Yoshikawa, T. Obata, H. Ikehira, T. Shiraishi, K. Watanabe, T. Saga, J. Mizoe, T. Kamada, A. Kato, and M. Miyazaki, “Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI,” Nucl. Med. Commun. 31(6), 604–609 (2010).
[PubMed]
C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol. B 160, 72–78 (2016).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
K. Vishwanath, H. Yuan, W. T. Barry, M. W. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solid tumors,” Neoplasia 11(9), 889–900 (2009).
[Crossref]
[PubMed]
A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res. 72(8), 2079–2088 (2012).
[Crossref]
[PubMed]
H. Cho, E. Ackerstaff, S. Carlin, M. E. Lupu, Y. Wang, A. Rizwan, J. O’Donoghue, C. C. Ling, J. L. Humm, P. B. Zanzonico, and J. A. Koutcher, “Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia,” Neoplasia 11(3), 247–259 (2009).
[Crossref]
[PubMed]
B. R. Zetter, “Angiogenesis and tumor metastasis,” Annu. Rev. Med. 49, 407–424 (1998).
[Crossref]
[PubMed]
P. Li, D. Zhang, L. Shen, K. Dong, M. Wu, Z. Ou, and D. Shi, “Redox homeostasis protects mitochondria through accelerating ROS conversion to enhance hypoxia resistance in cancer cells,” Sci. Rep. 6(1), 22831 (2016).
[Crossref]
[PubMed]
G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]
[PubMed]
D. Zhao, Y. Tu, L. Wan, L. Bu, T. Huang, X. Sun, K. Wang, and B. Shen, “In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging,” PLoS One 8(8), e71472 (2013).
[Crossref]
[PubMed]
N. Rajaram, A. E. Frees, A. N. Fontanella, J. Zhong, K. Hansen, M. W. Dewhirst, and N. Ramanujam, “Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer,” PLoS One 8(10), e76524 (2013).
[Crossref]
[PubMed]
A. F. Martinez, S. S. McCachren, M. Lee, H. A. Murphy, C. Zhu, B. T. Crouch, H. L. Martin, A. Erkanli, N. Rajaram, K. A. Ashcraft, A. N. Fontanella, M. W. Dewhirst, and N. Ramanujam, “Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging,” Sci. Rep. 8(1), 4171 (2018).
[Crossref]
[PubMed]
C. G. Zhu, A. F. Martinez, H. L. Martin, M. Li, B. T. Crouch, D. A. Carlson, T. A. J. Haystead, and N. Ramanujam, “Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer,” Sci. Rep. 7, 13772 (2017).
[Crossref]
G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, and B. Kalyanaraman, “Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation,” Br. J. Cancer 111(1), 85–93 (2014).
[Crossref]
[PubMed]