G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
D. Rohrbach, H. Salem, M. Aksahin, and U. Sunar, “Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy,” Photonics 3(3), 48 (2016).
[Crossref]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]
[PubMed]
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
J. a. Sosman, I. Puzanov, and M. B. Atkins, “Opportunities and obstacles to combination targeted therapy in renal cell cancer,” Clin. Cancer Res. 13(2 Pt 2), 764s–769s (2007).
[Crossref]
[PubMed]
V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125 (2007).
[Crossref]
[PubMed]
T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]
[PubMed]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomedical Opt. Express 2(1), 123–130 (2010).
[Crossref]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat. Rev. Cancer 8(8), 592–603 (2008).
[Crossref]
[PubMed]
O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell 8(4), 299–309 (2005).
[Crossref]
[PubMed]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
D. Boas, L. Campbell, and A. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref]
[PubMed]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref]
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
M. Braunagel, A. Graser, M. Reiser, and M. Notohamiprodjo, “The role of functional imaging in the era of targeted therapy of renal cell carcinoma,” World J. Urol. 32(1), 47–58 (2014).
[Crossref]
J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
H. B. Stone, J. M. Brown, T. L. Phillips, and R. M. Sutherland, “Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19–20, 1992, at the National Cancer Institute, Bethesda, Maryland,” Radiat. Res. 136(3), 422–434 (1993).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 6371–6375 (2002).
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8(3), 345–365 (2013).
[Crossref]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).
T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1–2), 9–24 (2015).
[Crossref]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
D. Boas, L. Campbell, and A. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]
[PubMed]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
L. Moserle, G. Jiménez-Valerio, and O. Casanovas, “Antiangiogenic therapies: going beyond their limits,” Cancer Discov. 4(1), 31–41 (2014).
[Crossref]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell 8(4), 299–309 (2005).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8(3), 345–365 (2013).
[Crossref]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” 18(4), 1367–1386 (2012).
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
E. L. Hull, D. L. Conover, and T. H. Foster, “Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy,” Br. J. Cancer 79(11–12), 1709–1716 (1999).
[Crossref]
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU Int. 108(10), 1556–1563 (2011).
[Crossref]
[PubMed]
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
C. Sessa, A. Guibal, G. Del Conte, and C. Rüegg, “Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?” Nat. Clin. Pract. Oncol. 5(7), 378–391 (2008).
[Crossref]
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of Noninvasive In Vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy,” Photochem. Photobiol. 66(3), 326–335 (1997).
[Crossref]
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8(3), 345–365 (2013).
[Crossref]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]
[PubMed]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” 18(4), 1367–1386 (2012).
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
H. P. Eikesdal and R. Kalluri, “Drug resistance associated with antiangiogenesis therapy,” Semin. Cancer Biol. 19(5), 310–317 (2009).
[Crossref]
[PubMed]
L. M. Ellis and D. J. Hicklin, “VEGF-targeted therapy: mechanisms of anti-tumour activity,” Nat. Rev. Cancer 8(8), 579–591 (2008).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
P. Farzam, “Hybrid diffuse optics for monitoring of tissue hemodynamics with applications in oncology,” Ph.D. thesis, ICFO-The Institute of Photonic Sciences (2014).
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nat. Med. 9(6), 669–676 (2003).
[Crossref]
[PubMed]
M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 61(1), 102–119 (2014).
[Crossref]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
J. Folkman, “Angiogenesis: an organizing principle for drug discovery?” Nat. Rev. Drug Discov. 6(4), 273–286 (2007).
[Crossref]
[PubMed]
L. Hlatky, P. Hahnfeldt, and J. Folkman, “Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us,” J. Natl. Cancer Inst. 94(12), 883–893 (2002).
[Crossref]
[PubMed]
J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. 1(1), 27–30 (1995).
[Crossref]
[PubMed]
J. Folkman, “What is the evidence that tumors are angiogenesis dependent?” J. Natl. Cancer Inst. 82(1), 4–6 (1990).
[Crossref]
[PubMed]
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 6371–6375 (2002).
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
E. L. Hull, D. L. Conover, and T. H. Foster, “Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy,” Br. J. Cancer 79(11–12), 1709–1716 (1999).
[Crossref]
[PubMed]
M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36(1), 93–104 (1997).
[Crossref]
[PubMed]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref]
[PubMed]
J. H. Pinthus, K. F. Whelan, D. Gallino, J. P. Lu, and N. Rothschild, “Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications,” Can. Urol. Assoc. J. 5(4), 274–282 (2011).
[Crossref]
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
K. Garber, “Personal mouse colonies give hope for pancreatic cancer patients,” J. Natl. Cancer Inst. 99(2), 105–107 (2007).
[Crossref]
[PubMed]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nat. Med. 9(6), 669–676 (2003).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 6371–6375 (2002).
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
S. Takatani and M. D. Graham, “Theoretical Analysis of Diffuse Reflectance from a Two-Layer Tissue Model,” IEEE Trans. Biomed. Eng. BME-26(12), 656–664 (1979).
[Crossref]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
M. Braunagel, A. Graser, M. Reiser, and M. Notohamiprodjo, “The role of functional imaging in the era of targeted therapy of renal cell carcinoma,” World J. Urol. 32(1), 47–58 (2014).
[Crossref]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
C. Sessa, A. Guibal, G. Del Conte, and C. Rüegg, “Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?” Nat. Clin. Pract. Oncol. 5(7), 378–391 (2008).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
L. Hlatky, P. Hahnfeldt, and J. Folkman, “Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us,” J. Natl. Cancer Inst. 94(12), 883–893 (2002).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat. Rev. Cancer 8(8), 592–603 (2008).
[Crossref]
[PubMed]
O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell 8(4), 299–309 (2005).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of Noninvasive In Vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy,” Photochem. Photobiol. 66(3), 326–335 (1997).
[Crossref]
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125 (2007).
[Crossref]
[PubMed]
T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomedical Opt. Express 2(1), 123–130 (2010).
[Crossref]
T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1–2), 9–24 (2015).
[Crossref]
L. M. Ellis and D. J. Hicklin, “VEGF-targeted therapy: mechanisms of anti-tumour activity,” Nat. Rev. Cancer 8(8), 579–591 (2008).
[Crossref]
[PubMed]
H. Youssoufian, D. J. Hicklin, and E. K. Rowinsky, “Review: Monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy,” Clin. Cancer Res. 13(18), 5544–5548 (2007).
[Crossref]
O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell 8(4), 299–309 (2005).
[Crossref]
[PubMed]
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Hlatky, P. Hahnfeldt, and J. Folkman, “Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us,” J. Natl. Cancer Inst. 94(12), 883–893 (2002).
[Crossref]
[PubMed]
M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
J. Allen and K. Howell, “Microvascular imaging: techniques and opportunities for clinical physiological measurements,” Physiol. Meas. 35(7), R91–R141 (2014).
[Crossref]
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
E. L. Hull, D. L. Conover, and T. H. Foster, “Carbogen-induced changes in rat mammary tumour oxygenation reported by near infrared spectroscopy,” Br. J. Cancer 79(11–12), 1709–1716 (1999).
[Crossref]
[PubMed]
M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36(1), 93–104 (1997).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
R. K. Jain, “Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy,” Science 307(5706), 58–62 (2005).
[Crossref]
[PubMed]
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
S. Kopetz, C. Jimenez, S.-M. Tu, and P. Sharma, “Pulmonary arteriovenous fistula in a patient with renal cell carcinoma,” The Eur. Respir. J. 29(4), 813–815 (2007).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
L. Moserle, G. Jiménez-Valerio, and O. Casanovas, “Antiangiogenic therapies: going beyond their limits,” Cancer Discov. 4(1), 31–41 (2014).
[Crossref]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
H. P. Eikesdal and R. Kalluri, “Drug resistance associated with antiangiogenesis therapy,” Semin. Cancer Biol. 19(5), 310–317 (2009).
[Crossref]
[PubMed]
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 6371–6375 (2002).
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomedical Opt. Express 2(1), 123–130 (2010).
[Crossref]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU Int. 108(10), 1556–1563 (2011).
[Crossref]
[PubMed]
V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125 (2007).
[Crossref]
[PubMed]
S. Kopetz, C. Jimenez, S.-M. Tu, and P. Sharma, “Pulmonary arteriovenous fistula in a patient with renal cell carcinoma,” The Eur. Respir. J. 29(4), 813–815 (2007).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU Int. 108(10), 1556–1563 (2011).
[Crossref]
[PubMed]
N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nat. Med. 9(6), 669–676 (2003).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
J. H. Pinthus, K. F. Whelan, D. Gallino, J. P. Lu, and N. Rothschild, “Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications,” Can. Urol. Assoc. J. 5(4), 274–282 (2011).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
P. Vaupel and A. Mayer, “Hypoxia in cancer: significance and impact on clinical outcome,” Cancer Metastasis Rev. 26(2), 225–239 (2007).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
J. Johansson, M. Mireles, J. Morales, P. Farzam, M. Martínez, O. Casanovas, and T. Durduran, “Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system,” Biomedical Opt. Express 7(2), 481 (2016).
[Crossref]
L. Moserle, G. Jiménez-Valerio, and O. Casanovas, “Antiangiogenic therapies: going beyond their limits,” Cancer Discov. 4(1), 31–41 (2014).
[Crossref]
T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1–2), 9–24 (2015).
[Crossref]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
M. Braunagel, A. Graser, M. Reiser, and M. Notohamiprodjo, “The role of functional imaging in the era of targeted therapy of renal cell carcinoma,” World J. Urol. 32(1), 47–58 (2014).
[Crossref]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, and G. Aprile, “Clinical advances in the development of novel VEGFR2 inhibitors,” Ann. Transl. Med. 2(12), 123 (2014).
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomedical Opt. Express 2(1), 123–130 (2010).
[Crossref]
R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of Noninvasive In Vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy,” Photochem. Photobiol. 66(3), 326–335 (1997).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
H. B. Stone, J. M. Brown, T. L. Phillips, and R. M. Sutherland, “Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19–20, 1992, at the National Cancer Institute, Bethesda, Maryland,” Radiat. Res. 136(3), 422–434 (1993).
[Crossref]
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
J. H. Pinthus, K. F. Whelan, D. Gallino, J. P. Lu, and N. Rothschild, “Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications,” Can. Urol. Assoc. J. 5(4), 274–282 (2011).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU Int. 108(10), 1556–1563 (2011).
[Crossref]
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
J. a. Sosman, I. Puzanov, and M. B. Atkins, “Opportunities and obstacles to combination targeted therapy in renal cell cancer,” Clin. Cancer Res. 13(2 Pt 2), 764s–769s (2007).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen, and R. S. Kerbel, “Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity,” The J. Clin. Invest. 105(8), R15–R24 (2000).
[Crossref]
[PubMed]
T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1–2), 9–24 (2015).
[Crossref]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
J. Jacobsen, K. Grankvist, T. Rasmuson, A. Bergh, G. Landberg, and B. Ljungberg, “Expression of vascular endothelial growth factor protein in human renal cell carcinoma,” BJU Int. 93(3), 297–302 (2004).
[Crossref]
[PubMed]
W. K. Rathmell, T. M. Wright, and B. I. Rini, “Molecularly targeted therapy in renal cell carcinoma,” Expert Rev. Anticancer Ther. 5(6), 1031–1040 (2005).
[Crossref]
[PubMed]
M. Braunagel, A. Graser, M. Reiser, and M. Notohamiprodjo, “The role of functional imaging in the era of targeted therapy of renal cell carcinoma,” World J. Urol. 32(1), 47–58 (2014).
[Crossref]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
W. K. Rathmell, T. M. Wright, and B. I. Rini, “Molecularly targeted therapy in renal cell carcinoma,” Expert Rev. Anticancer Ther. 5(6), 1031–1040 (2005).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
D. Rohrbach, H. Salem, M. Aksahin, and U. Sunar, “Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy,” Photonics 3(3), 48 (2016).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
J. H. Pinthus, K. F. Whelan, D. Gallino, J. P. Lu, and N. Rothschild, “Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications,” Can. Urol. Assoc. J. 5(4), 274–282 (2011).
[Crossref]
[PubMed]
H. Youssoufian, D. J. Hicklin, and E. K. Rowinsky, “Review: Monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy,” Clin. Cancer Res. 13(18), 5544–5548 (2007).
[Crossref]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
C. Sessa, A. Guibal, G. Del Conte, and C. Rüegg, “Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?” Nat. Clin. Pract. Oncol. 5(7), 378–391 (2008).
[Crossref]
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
D. Rohrbach, H. Salem, M. Aksahin, and U. Sunar, “Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy,” Photonics 3(3), 48 (2016).
[Crossref]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
D. Boas, S. Sakadžic, J. Selb, P. Farzam, M. Franceschini, and S. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref]
[PubMed]
C. Sessa, A. Guibal, G. Del Conte, and C. Rüegg, “Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?” Nat. Clin. Pract. Oncol. 5(7), 378–391 (2008).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
S. Kopetz, C. Jimenez, S.-M. Tu, and P. Sharma, “Pulmonary arteriovenous fistula in a patient with renal cell carcinoma,” The Eur. Respir. J. 29(4), 813–815 (2007).
[Crossref]
[PubMed]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Béroud, J. Demont, R. Bouvier, H. Schägger, and C. Godinot, “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma,” Carcinogenesis 23(5), 759–768 (2002).
[Crossref]
[PubMed]
C. J. Bruns, M. Shrader, M. T. Harbison, C. Portera, C. C. Solorzano, K.-W. Jauch, D. J. Hicklin, R. Radinsky, and L. M. Ellis, “Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice,” Int. J. Cancer. 102(2), 101–108 (2002).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
J. a. Sosman, I. Puzanov, and M. B. Atkins, “Opportunities and obstacles to combination targeted therapy in renal cell cancer,” Clin. Cancer Res. 13(2 Pt 2), 764s–769s (2007).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]
T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1–2), 9–24 (2015).
[Crossref]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
H. B. Stone, J. M. Brown, T. L. Phillips, and R. M. Sutherland, “Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19–20, 1992, at the National Cancer Institute, Bethesda, Maryland,” Radiat. Res. 136(3), 422–434 (1993).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
D. Rohrbach, H. Salem, M. Aksahin, and U. Sunar, “Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy,” Photonics 3(3), 48 (2016).
[Crossref]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomedical Opt. Express 2(1), 123–130 (2010).
[Crossref]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
H. B. Stone, J. M. Brown, T. L. Phillips, and R. M. Sutherland, “Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19–20, 1992, at the National Cancer Institute, Bethesda, Maryland,” Radiat. Res. 136(3), 422–434 (1993).
[Crossref]
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
S. Takatani and M. D. Graham, “Theoretical Analysis of Diffuse Reflectance from a Two-Layer Tissue Model,” IEEE Trans. Biomed. Eng. BME-26(12), 656–664 (1979).
[Crossref]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
C. Errico, B. F. Osmanski, S. Pezet, O. Couture, Z. Lenkei, and M. Tanter, “Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler,” NeuroImage 124, 752–761 (2016).
[Crossref]
M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 61(1), 102–119 (2014).
[Crossref]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).
[Crossref]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
M. S. Gee, H. M. Saunders, J. C. Lee, J. F. Sanzo, W. T. Jenkins, S. M. Evans, G. Trinchieri, C. M. Sehgal, M. D. Feldman, and W. M. Lee, “Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations,” Cancer Res. 61(7), 2974–2982 (2001).
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
A. Takahashi, H. Sasaki, S. J. Kim, K. Tobisu, T. Kakizoe, T. Tsukamoto, Y. Kumamoto, T. Sugimura, and M. Terada, “Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis,” Cancer Res. 54(15), 4233–4237 (1994).
[PubMed]
S. Kopetz, C. Jimenez, S.-M. Tu, and P. Sharma, “Pulmonary arteriovenous fistula in a patient with renal cell carcinoma,” The Eur. Respir. J. 29(4), 813–815 (2007).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. a. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14626–31 (2011).
[Crossref]
[PubMed]
B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref]
[PubMed]
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).
M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]
P. Vaupel and A. Mayer, “Hypoxia in cancer: significance and impact on clinical outcome,” Cancer Metastasis Rev. 26(2), 225–239 (2007).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
G. Capellá, L. Farré, A. Villanueva, G. Reyes, C. García, G. Tarafa, and F. Lluís, “Orthotopic models of human pancreatic cancer,” Ann. N.Y. Acad. Sci. 880(93), 103–109 (1999).
[Crossref]
[PubMed]
G. Reyes, A. Villanueva, C. García, F. J. Sancho, J. Piulats, F. Lluís, and G. Capellá, “Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice,” Cancer Res. 56(24), 5713–5719 (1996).
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
G. Jiménez-Valerio, M. Martínez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de Olza, C. Suárez, X. García-del Muro, J. Carles, F. Viñals, M. Graupera, S. Indraccolo, and O. Casanovas, “Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients,” Cell Reports 15(6), 1134–1143 (2016).
[Crossref]
[PubMed]
M. Pàez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Viñals, M. Inoue, G. Bergers, D. Hanahan, and O. Casanovas, “Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis,” Cancer Cell 15(3), 220–231 (2009).
[Crossref]
[PubMed]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine Head Neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[Crossref]
[PubMed]
I. Duran, J. Lambea, P. Maroto, J. L. González-Larriba, L. Flores, S. Granados-Principal, M. Graupera, B. Sáez, A. Vivancos, and O. Casanovas, “Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action,” Target. Oncol. 12, 19–35 (2016).
[Crossref]
[PubMed]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
H.-W. Wang, J.-K. Jiang, C.-H. Lin, J.-K. Lin, G.-J. Huang, and J.-S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express 17(4), 2805–2817 (2009).
[Crossref]
[PubMed]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
H. W. Wechsel, K. H. Bichler, G. Feil, W. Loeser, S. Lahme, and E. Petri, “Renal cell carcinoma: relevance of angiogenetic factors,” Anticancer Res. 19(2C), 1537–1540 (1999).
[PubMed]
R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of Noninvasive In Vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy,” Photochem. Photobiol. 66(3), 326–335 (1997).
[Crossref]
[PubMed]
J. H. Pinthus, K. F. Whelan, D. Gallino, J. P. Lu, and N. Rothschild, “Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications,” Can. Urol. Assoc. J. 5(4), 274–282 (2011).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU Int. 108(10), 1556–1563 (2011).
[Crossref]
[PubMed]
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res. 64(11), 3731–3736 (2004).
[Crossref]
[PubMed]
D. Whitaker-Menezes, U. E. Martinez-Outschoorn, N. Flomenberg, R. Birbe, A. K. Witkiewicz, A. Howell, S. Pavlides, A. Tsirigos, A. Ertel, R. G. Pestell, P. Broda, C. Minetti, M. P. Lisanti, and F. Sotgia, “Hyperactivation of oxidative mitochondrial metabolism in epithelial Cancer Cells in situ,” Cell Cycle 10(23), 4047–4064 (2011).
[Crossref]
[PubMed]
M. Prewett, J. Huber, Y. Li, A. Santiago, W. O’Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, L. Witte, P. Bohlen, and D. J. Hicklin, “Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors,” Cancer Res. 59(20), 5209–5218 (1999).
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
W. K. Rathmell, T. M. Wright, and B. I. Rini, “Molecularly targeted therapy in renal cell carcinoma,” Expert Rev. Anticancer Ther. 5(6), 1031–1040 (2005).
[Crossref]
[PubMed]
G. Ramirez, A. Proctor, K. Jung, T. Wu, S. Han, R. Adams, J. Ren, D. Byun, K. Madden, E. Brown, T. Foster, P. Farzam, T. Durduran, and R. Choe, “Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy,” Biomedical Opt. Express 7(9), 3610 (2016).
[Crossref]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
S. Ueda, D. Roblyer, A. Cerussi, A. Durkin, A. Leproux, Y. Santoro, S. Xu, T. D. O’Sullivan, D. Hsiang, R. Mehta, J. Butler, and B. J. Tromberg, “Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy,” Cancer Res. 72(17), 4318–4328 (2012).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
T. M. Baran, J. D. Wilson, S. Mitra, J. L. Yao, E. M. Messing, D. L. Waldman, and T. H. Foster, “Optical property measurements establish the feasibility of photodynamic therapy as a minimally invasive intervention for tumors of the kidney,” J. Biomed. Opt. 17(9), 0980021 (2012).
[Crossref]
D. Boas, L. Campbell, and A. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref]
[PubMed]
S. H. Chung, M. D. Feldman, D. Martinez, H. Kim, M. E. Putt, D. R. Busch, J. Tchou, B. J. Czerniecki, M. D. Schnall, M. A. Rosen, A. DeMichele, A. G. Yodh, and R. Choe, “Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures,” Breast Cancer Res. : BCR 17(1), 72 (2015).
[Crossref]
[PubMed]
R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PLoS ONE 9(6), e99683 (2014).
[Crossref]
[PubMed]
D. R. Busch, R. Choe, M. a. Rosen, W. Guo, T. Durduran, M. D. Feldman, C. Mies, B. J. Czerniecki, J. Tchou, A. Demichele, M. D. Schnall, and A. G. Yodh, “Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy,” Biomedical Opt. Express 4(1), 105–121 (2013).
[Crossref]
D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8(3), 345–365 (2013).
[Crossref]
R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. a. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: Consequences for vasoresponse to photodynamic therapy,” PLoS ONE 7(5), 1–10 (2012).
[Crossref]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, and D. G. Buerk, and Others, “An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model,” Cancer Res. 63(21), 7232–7240 (2003).
[PubMed]
H. Youssoufian, D. J. Hicklin, and E. K. Rowinsky, “Review: Monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy,” Clin. Cancer Res. 13(18), 5544–5548 (2007).
[Crossref]
L. Dong, M. Kudrimoti, D. Irwin, L. Chen, S. Kumar, Y. Shang, C. Huang, E. L. Johnson, S. D. Stevens, B. J. Shelton, and G. Yu, “Diffuse optical measurements of Head Neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes,” J. Biomed. Opt. 21(8), 085004 (2016).
[Crossref]
G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref]
[PubMed]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
R. S. Kerbel, J. Yu, J. Tran, S. Man, A. Viloria-Petit, G. Klement, B. L. Coomber, and J. Rak, “Possible mechanisms of acquired resistance to anti-angiogenic drugs: Implications for the use of combination therapy approaches,” Cancer Metastasis Rev. 20(1), 79–86 (2001).
[Crossref]
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Res. 62(22), 6371–6375 (2002).
[PubMed]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
D. Zhang, E.-m. E. Hedlund, S. Lim, F. Chen, Y. Zhang, B. Sun, and Y. Cao, “Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 4117–4122 (2011).
[Crossref]
[PubMed]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4390–4406 (2011).
[Crossref]
[PubMed]
U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H.-W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007).
[Crossref]
[PubMed]
U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with Head Neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006).
[Crossref]
G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005).
[Crossref]
[PubMed]
R. K. Jain, D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen, “Biomarkers of response and resistance to antiangiogenic therapy,” Nat. Rev. Clin. Oncol. 6(6), 327–338 (2009).
[Crossref]
[PubMed]
G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2007).
[Crossref]
Y. Xue, P. Religa, R. Cao, A. J. Hansen, F. Lucchini, B. Jones, Y. Wu, Z. Zhu, B. Pytowski, Y. Liang, W. Zhong, P. Vezzoni, B. Rozell, and Y. Cao, “Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18513–18518 (2008).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the vegf receptor-2 (flk1/kdr) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
L. Witte, D. J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell, and P. Böhlen, “Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy,” Cancer Metastasis Rev. 17(2), 155–161 (1998).
[Crossref]
[PubMed]
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).