Abstract

Optical tweezers have emerged as a prominent light-based tool for pico-Newton (pN) force microscopy in mechanobiological studies. However, the efficacy of optical tweezers are limited in applications where concurrent metrology of the nano-sized structures under interrogation is essential to the quantitative analysis of its mechanical properties and various mechanotransduction events. We have developed an all-optical platform delivering pN force resolution in parallel with nano-scale structural imaging of the biological sample by combining optical tweezers with interferometric quantitative phase microscopy. These capabilities allow real-time micromanipulation and label-free measurement of sample’s nanostructures and nanomechanical responses, opening avenues to a wide range of new research possibilities and applications in biology.

© 2016 Optical Society of America

1. Introduction

Optical tweezers (OTs) continue to remain a desired, and in many cases, the only non-destructive tool in biophysical studies that involve force measurements on the cellular, sub-cellular, and molecular scales [1–4]. Quantitative mechanobiological studies are relevant to understanding of cellular processes such as morphogenesis, differentiation, cytokinesis, growth, and motility [5]. We and others have utilized OTs to study membrane-based transduction [6, 7] and membrane-cytoskeleton interactions by extracting membrane nanotubes (tethers) from cells [8, 9].

While OTs provide excellent resolution in force measurements, sub-diffraction morphological changes in the load-bearing elements are undetectable using conventional microscopy. Super-resolution microscopy (SRM) methods employing fluorescent labels are not favorable as they impose changes on the molecular structures of the specimen [10] that affect its mechanical behavior [11]. Similarly, scanning probe SRM techniques such as atomic force microscopy (AFM) [12], tip-enhanced near-field optical microscopy [13], and the recent method of scanning optically trapped spheres for surface imaging [14] are not suitable for concurrent micromanipulation and wide-filed imaging of the sample. In addition to their poor temporal resolution for wide-field imaging, such techniques inherently disturb local force fields and may apply additional forces to the sample.

Although electron microscopy in fluids has been made possible [15], its application to live samples is limited mainly due to radiation damage and decreased resolution in imaging depth [16]. Low imaging contrast in addition to complex substrate, sample, and chamber preparations required to integrate electron microscopy with other microscopy modes further complicate its use in biological studies.

Interferometric quantitative phase microscopy (QPM) offers nanometer sensitivity to optical pathlength changes in transparent and semi-transparent objects, in a non-invasive and label-free manner [17]. The sample’s thickness and the mismatch between its refractive index (RI) and that of the surrounding medium result in optical pathlength delays that can be resolved at sub-nanometer resolution using QPM. Wide-field microscopy at video rates, nanometer sensitivity to changes in sample’s morphology, and the ease of integrating QPM methods with other investigative techniques (such as fluorescence microscopy) have led to a growing application of QPM in functional and structural biological studies [18, 19].

Here we report on a platform that for the first time combines stiffness-calibrated OTs with an interferometric QPM technique based on Zernike’s phase contrast and Gabor’s holography [20]. This combined optical micromanipulation and interferometric topography (COMMIT) platform allows simultaneous measurements of pN level forces with nm scale spatial resolution associated with the object under interrogation. Low coherence illumination and common-path interferometry allow for speckle-free imaging [20] at high phase stability [21].

2. Methods

2.1 COMMIT platform

Figure 1 shows a schematic of the COMMIT platform integrating OTs and interformetric QPM. We have previously reported the details of the OTs setup and stiffness calibration for optical micro manipulation and force microscopy [22]. Briefly, an Nd:YVO4 laser beam (Prisma 1064-V, Coherent) was expanded and coupled into an inverted microscope (Ti-Eclipse, Nikon Inc.) to form the optical trap. A 100X oil immersion objective lens (numerical aperture (NA) 1.49, Apo-TIRF, Nikon) was used for simultaneous imaging and optical trapping. A piezoelectric stage with 1 nm precision in x, y, and z coordinates was used to control the relative position of samples and the optical trap. Sulfate-modified polystyrene microspheres with mean diameter of 4.2 µm (Molecular probes) were used as handles for pulling tethers and optical probes for force measurements.

 figure: Fig. 1

Fig. 1 Schematic of the COMMIT platform. HL: Halogen lamp. CA: Condenser annulus. CL: Condenser lens. C: PZT controller. MO: Microscope objective. L: Nd:YVO4 laser. BE: Beam expander. M: Mirror. DM: Dichroic mirror. TL: Tube lens. BS: Beam splitter. FL: Focusing lens and IR filter. IP: Image plane and polarizer. L1 and L2: Achromatic doublets, f = 500 mm. SLM: Spatial light modulator. QPD: Quadrant photodetector. PZT: Piezoelectric translation stage.

Download Full Size | PPT Slide | PDF

The sample was illuminated by a 100W halogen lamp through a condenser annulus. Light that passes through the sample un-scattered (U0) forms the image of the condenser annulus at the Fourier plane of the achromatic doublet (L1). A reflective spatial light modulator (SLM) (Hamamatsu) was used in phase-only modulation mode in conjugation with a horizontal polarizer at the microscope’s output image plane to shift the phase of U0 in four π/2 steps. The un-scattered component interferes with the scattered light (U1) to form the sample’s image on the detector at the focal plane of the second achromatic doublet (L2).

An EM-CCD (C9100-13, Hamamatsu) captured the intensity maps of the sample (I1-4) corresponding to the four phase modulations. CCD’s exposure time was set to 30.5 ms. To accommodate full re-arrangement of the nematic liquid crystals in the SLM, field delays of 83 ms (SLM response time for a π/2 modulation) were used between the phase modulations. Twelve phase shifted images were acquired every second to yield quantitative phase resolved images at 3 fps. To obtain the phase delay map (φ), we first calculated the phase difference between U0 and U1 using the four intensity (I1-I4) maps:

Δφ=tan1[(I1I3)(I2I4)]
The phase delay map was then calculated as:
φ=tan1[βsin(Δφ)1+βcos(Δφ)]
where

β=|U1||U0|.

The calculated phase delay map is correlated with the sample’s thickness along the propagation axis of the light (dz), center wavelength of the illumination (λ = 595 nm), and the local differences between the RIs of the sample and the surrounding medium (ns and nr, respectively):

φ=2πλ(nrns)dz.

We calibrated the stiffness of the optical trap against viscous drag forces since the trapped particle undergoes large displacements in our experiments [22]. Microspheres were trapped inside Modified Eagle Medium (MEM) at 37 °C, and a piezoelectric stage (Physik Instrumente) was used to move the trapping medium against the optically trapped particle at various speeds. For the force calibration process, microsphere’s displacements from the center of the optical trap were monitored at 10 KHz using a QPD (Pacific Silicon Sensor) in imaging mode, delivering a 10 nm resolution. Viscous drag forces were plotted against microsphere displacements to calculate the OTs stiffness (see Appendix for more details). Sub-pixel particle tracking [23] was used during cell experiments to calculate microsphere displacements in the CCD images at 10 nm spatial resolution.

2.2 Validation of interferometric QPM

A custom made microchip and polystyrene nanospheres of two different diameters were used to verify the validity of the topographical results. To fabricate the microchip, a microscope glass coverslip was spin coated with polymethylmethacrylate (MicroChem) at 4,000 rpm for 30 seconds. After spinning, the chip was transferred to a hot plate and heated to 180°C for 80 seconds. Arrays of patterns were then etched into the microchip using electron beam lithography (Leo SUPRA 55, Zeiss). The resulting patterns had depths ranging between 150 to 190 nm. An area on the chip was selected and imaged using AFM (Smart SPM-1000, AIST-NT Inc.) for comparison with the QPM topography results of the same region.

In addition to using the custom made microchip, we validated our system’s QPM measurements by imaging polystyrene nanospheres (Molecular Probes) with manufacturer-reported mean diameters ± standard deviation (SD) of 400 ± 17 nm and 630 ± 16 nm. The nanospheres were dispersed in water, transferred onto a microscope coverslip, and allowed to dry before imaging.

2.3 Cell culture and tether formation

We used the COMMIT platform to simultaneously form, image, and measure the dynamic forces associated with membrane tethers pulled from kidney (HEK-293) cells, as an illustrative nano-structured system. HEK-293 cells were seeded onto glass-bottom petri dishes coated with Poly-D-Lysine 24 hours before the experiments. Cells were cultured at 37 °C and 5% CO2 in a medium consisting of MEM and 10% fetal bovine serum. Prior to pulling tethers, cells were washed with 1X (≈ 320 mOsm) phosphate buffer saline, and the culture medium was replaced by a mixture of MEM and 4.2 µm microspheres. A microsphere was optically trapped and brought into contact with the membrane of an adhered cell until a surface attachment between the microsphere and the cell membrane was confirmed. The cell was then moved away from the optically trapped particle at 1 µm/s using the piezoelectric stage, extruding a membrane tether.

3. Results and discussion

The AFM-based topography and QPM-resolved image of the custom made microchip are shown in Figs. 2(ai) and 2(aii), respectively, and compared with each other in Fig. 2(aiii). While the lateral resolution of the quantitative phase image is diffraction limited, parallel to the direction of light propagation, QPM reported the size of the sub-diffraction structures within ± 7.2 nm of the corresponding features measured using AFM. The mean ± SD depth of the microchip features were measured as 179 ± 15 nm using AFM and 172 ± 16 nm using QPM. While there is excellent agreement in the peak height and phase values, as determined by AFM and QPM, respectively, there is a discrepancy between the neighboring peaks. We attribute this discrepancy to the halo effect intrinsic to phase imaging [24].

 figure: Fig. 2

Fig. 2 (a): Comparison between topographical results of AFM and QPM for a custom made microchip. (ai): Inverted AFM image of the custom made microchip; the color bar is in nanometers. (aii): QPM-resolved image of the region shown in (ai); color bar is in radians. (aiii): Overlapped cross sections of (ai) and (aii) along the dotted lines. Scale bars in panels (ai) and (aii) = 2 µm. (bi): Pseudo-3D representation of a quantitative phase image of two sets of polystyrene nanospheres. (bii): Phase profile of 400 nm diameter nanospheres. (biii): Phase profile of 630 nm diameter nanospheres. Manufacturer-reported mean ± SD diameters of the nanospheres were 400 ± 17 nm and 630 ± 16 nm. Diameters measured using QPM were 425 ± 13 nm and 616 ± 16 nm. Color bar is in radians. Scale bar = 5 µm.

Download Full Size | PPT Slide | PDF

Figure 2(b) shows the polystyrene nanospheres resolved by QPM. Assuming a value of 1.59 for npolystyrene nanosphere, the QPM-resolved mean ± SD nanosphere diameters of 425 ± 13 nm and 616 ± 16 nm are in good agreement with those reported by the manufacturer.

Figure 3 shows the quantitative phase image of a tether extracted from a HEK-293 cell using the COMMIT platform. In the absence of experimental methods to verify the nanostructure of cell membrane tethers, mechanical models of tethers have been widely based on the tenet that lipid membrane nanotubes exhibit perfect cylindrical shapes at equilibrium [25, 26]. For the first time, these label-free images reveal curvatures and diameter changes along the tether axis. Previous analyses, including those by our group [27] and others [28] had assumed a constant value of tether diameter (dtether) to estimate the bending energy of the membrane. Our observation of a non-uniform dtether, now suggests the importance of new analytical methods to accurately extract various membrane mechanical properties, and their spatially and temporally variations. The curved (catenoid) shape of the tether contour is in agreement with the predictions of recent multi-scale molecular models of bilayer nanotubes [29].

 figure: Fig. 3

Fig. 3 Pseudo-3D representation of the quantitative phase image of a tether extracted from a HEK-293 cell ≈ 40 s after elongation had stopped. Thinning along the tether axis results in a catenoid-like contour. Tether diameters at the A, B, and C boxed sections are measured as 456 nm, 253 nm, and 497 nm, respectively. Color bar is in radians. Scale bar = 5 µm.

Download Full Size | PPT Slide | PDF

Figure 4 and Visualization 1 show illustrative examples of concurrent optical micromanipulation, force microscopy, and structural metrology during a membrane tether experiment. An optically trapped 4.2 µm microsphere was used to form a tether by detaching the cell membrane from the underlying cytoskeleton [Fig. 4(a)]. Following the detachment of a patch of membrane from the cytoskeleton, tether reaction force decreased during the elongation interval [Fig. 4(b)]. Membrane tether ruptures in reaction to the increased pulling force [Fig. 4(c)]. Subsequently, lipid bilayer re-assembled at the either ruptured end of the tether resulting in a brief reversal of the reaction force direction [Fig. 4(d)].

 figure: Fig. 4

Fig. 4 Dynamic quantitative measurement of membrane tether structure and reaction force during various time intervals (see Visualization 1). (a): Tether formation interval. (b): Tether elongation interval. Tether reaction force decreased following the formation interval. (c): Increased pulling force resulted in tether rupture. (d): Lipid membrane reassembled on both ends of the ruptured tether and the direction of the reaction force was momentarily reversed (recoil). Increased diameters at both ends were resolved as a result of membrane folding. The arrows represent the magnitude and direction of tether reaction force. Color bars are in radians. Scale bars = 10 µm.

Download Full Size | PPT Slide | PDF

The maximum axial sensitivity of the QPM method depends on the RI difference between those of the sample (ns) and the surrounding medium (nmedia) [Eq. (4)], and is ultimately limited by the compound temporal phase noise of the system (5 mrad in our current setup). The QPM method employed in this study has been previously shown to produce topographical results from graphene structures at sub-nanometer accuracy [30]. In cellular applications, where low RI differences are involved (ncell reported in the range of 1.354 [31] to 1.8 [32] and nmedia = 1.337), the topography sensitivity of our platform ranges from 11 to 28 nm.

Some of the current limitations of our COMMIT system are related to imaging constrained to 2D (depth of field component not present), lateral resolution being diffraction limited, and the QPM speed with temporal resolution at 0.3 s. Fast transitions in the sample may result in a phase error (blur) depending on the acquisition rate of phase shifted images.

Given the diffraction limited lateral resolution of the imaging scheme, the phase resolved image may have motion blur if the corresponding points in the four phase shifted images fall outside of one airy disk. Therefore, in our system, the compound phase noise (5 mrad) is the dominant sensitivity noise for dynamic structural changes at rates of up to ~0.8 µm/s. Within this regime, the compound sensitivity noise is smaller than the average thermal fluctuations of cell membrane (e.g., 36 nm for erythrocyte membranes) [33], retaining the imaging sensitivity in measuring morphological changes in subcellular and membrane nanostructures.

In the tether extraction example presented in Figs. 4(a), 4(b), and Visualization 1, even though the motion is unidirectional and the tether has a simple and continuous geometry (tether diameter changing less than that of the compound noise between each two subsequently resolvable points along the tether), uncertainty due to motion blur in the measurements cannot be ruled out since the elongation rate is about 25% higher than the 0.8 µm/s limit. However, the contribution of the blur decreases below the compound noise for slower processes that follow upon termination of the elongation, which is the case for the image shown in Fig. 3.

While higher acquisition rates are needed to eliminate the blur in tracking processes such as fast vesicle transportation (up to 1.8 µm/s) [34], the current imaging rate can be reliably employed to monitor multitude of dynamic cellular processes. Our current platform can be used to study subcellular morphological changes at rates < 0.8 µm/s such as the changes in tethers held at constant lengths (as shown in Fig. 3), actin polymerization and filopodia growth in response to pulling forces in the range of 7 - 150 nm/s [35], nanoparticles transport inside cells (> 6 nm/s) [36], virus motility within cells (80 - 400 nm/s) [37], and cellular motility in 2 and 3 dimensions (> 100 nm/s) [38]. Furthermore, higher phase modulation rates (e.g. 10 ms/modulation) and use of microscope objectives with lower NA (e.g., 1.2) expand the range of transient phenomena that are resolvable with negligible motion blur to ~8 µm/s while still maintaining an stable optical trap.

Combined optical tweezers and QPM systems have been used to evaluate the thickness of erythrocytes at different orientations [39], and employed as a cell rotator to obtain 3D images of motile cells [40]. The COMMIT system offers the capability to obtain measurements of time-resolved forces exerted or delivered to a biological structure. Our system is also configured in common-path, which is more robust than Mach-Zender type paths [41].

Force-calibrated optical micromanipulation in conjunction with video rate QPM facilitates dynamic measurements of the transient nano-scale mechanical properties of cells and intracellular organelles by bridging nanomechanical measurements with real-time nano-structural information. The utility of force measurements is in characterization of the mechanical properties of cell membranes and quantification of the mechanical interactions between the membrane and the cytoskeleton. Cellular mechanical properties are also regarded as sensitive markers of disease [42, 43].

QPM conjoined with machine learning algorithms are also being investigated as a marker-free diagnostic tool in histopathology [19]. Therefore, COMMIT can potentially improve the reliability of the histological findings by combining both of these analytical capabilities in one platform. In mechanobiology studies, COMMIT can provide an unprecedented capability for simultaneous induction of precise mechanical stimuli along with quantitative analysis of the mechanical responses, and in-vivo measurement of the resulting sub-diffraction cell shape changes and organelle deformations [44].

4. Conclusions

We have provided the first demonstration of an experimental platform combining force calibrated OTs and QPM for concurrent optical micromanipulation at nanometer scale, pN force microscopy, and wide-field label-free non-invasive metrology of the sample with nanometer axial sensitivity. Our experimental platform provides capability to study a wide range of mechanobiological phenomena where simultaneous force quantification and nanometer measurements of biological structures may be needed.

Appendix

The stiffness of the optical tweezers (OTs) was calibrated against calculated viscous-drag forces applied on an optically-trapped particle by moving the trapping medium against the particle. The trapped particle was imaged onto a quadrant photodetector (QPD) (Fig. 1), and its displacements were tracked using the displacement-calibrated differential voltage readouts of the QPD at 10 KHz. Position standard deviation of a stationary 4.2 µm diameter microsphere was < 10 nm as tracked using the QPD (Fig. 5).

 figure: Fig. 5

Fig. 5 QPD voltage readout in response to a 20 nm PZT-controlled displacement of a 4.2 µm diameter microsphere through the focal spot of the laser beam, providing a signal-to-the-noise ratio of >2.

Download Full Size | PPT Slide | PDF

The viscous-drag force applied to the trapped microsphere was calculated as:

Fdrag=6πηνr1916(rh)+18(rh)345256(rh)4116(rh)5
where η is the dynamic viscosity of Modified Eagle Medium (1.41 centipoise at 37 °C [45]), ν is the fluid velocity induced by the PTZ-controlled displacement of the trapping chamber, r is the radius of the microsphere (2.1 µm), and h is the height of the microsphere from the bottom of the trapping chamber (12 µm). Particle displacements from the center of the optical trap were tracked using the QPD, and plotted against the viscous-drag forces to calculate the OTs’ Hookean stiffness (Fig. 6).

 figure: Fig. 6

Fig. 6 Stiffness calibration of the OTs. The Hookean stiffness (k) of the OTs is calculated as the slope of the linear fit to the displacement-force graph (F = kx).

Download Full Size | PPT Slide | PDF

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health (2R01-DC02775) and National Science Foundation (BES-0522862). Additional support was provided by Bourns College of Engineering and the Center for Bioengineering Research at the University of California, Riverside.

References and links

1. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990). [CrossRef]   [PubMed]  

2. B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014). [CrossRef]   [PubMed]  

3. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011). [CrossRef]   [PubMed]  

4. M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016). [PubMed]  

5. T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014). [CrossRef]   [PubMed]  

6. W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010). [CrossRef]   [PubMed]  

7. N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011). [CrossRef]   [PubMed]  

8. D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000). [CrossRef]   [PubMed]  

9. N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013). [CrossRef]   [PubMed]  

10. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010). [CrossRef]   [PubMed]  

11. V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009). [CrossRef]   [PubMed]  

12. D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008). [CrossRef]   [PubMed]  

13. N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014). [CrossRef]   [PubMed]  

14. L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015). [CrossRef]   [PubMed]  

15. S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004). [CrossRef]   [PubMed]  

16. N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011). [CrossRef]   [PubMed]  

17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008). [CrossRef]   [PubMed]  

18. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004). [CrossRef]   [PubMed]  

19. S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015). [CrossRef]   [PubMed]  

20. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011). [CrossRef]   [PubMed]  

21. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011). [CrossRef]   [PubMed]  

22. M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014). [CrossRef]   [PubMed]  

23. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012). [CrossRef]   [PubMed]  

24. T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

25. R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987). [CrossRef]   [PubMed]  

26. F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006). [CrossRef]   [PubMed]  

27. N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012). [CrossRef]   [PubMed]  

28. M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001). [CrossRef]   [PubMed]  

29. S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012). [CrossRef]   [PubMed]  

30. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010). [CrossRef]   [PubMed]  

31. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005). [CrossRef]   [PubMed]  

32. S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012). [CrossRef]   [PubMed]  

33. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009). [CrossRef]   [PubMed]  

34. G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007). [CrossRef]   [PubMed]  

35. T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013). [CrossRef]   [PubMed]  

36. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010). [PubMed]  

37. J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014). [CrossRef]   [PubMed]  

38. S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010). [CrossRef]   [PubMed]  

39. N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013). [CrossRef]  

40. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013). [CrossRef]   [PubMed]  

41. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008). [CrossRef]  

42. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007). [CrossRef]   [PubMed]  

43. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005). [CrossRef]   [PubMed]  

44. J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004). [CrossRef]   [PubMed]  

45. S. Denniss and J. Rush, “Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media,” FASEB J. 29(1 Supplement), 1029.1019 (2015).

References

  • View by:

  1. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
    [Crossref] [PubMed]
  2. B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
    [Crossref] [PubMed]
  3. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref] [PubMed]
  4. M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
    [PubMed]
  5. T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
    [Crossref] [PubMed]
  6. W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
    [Crossref] [PubMed]
  7. N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
    [Crossref] [PubMed]
  8. D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
    [Crossref] [PubMed]
  9. N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
    [Crossref] [PubMed]
  10. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
    [Crossref] [PubMed]
  11. V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
    [Crossref] [PubMed]
  12. D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
    [Crossref] [PubMed]
  13. N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
    [Crossref] [PubMed]
  14. L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
    [Crossref] [PubMed]
  15. S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
    [Crossref] [PubMed]
  16. N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
    [Crossref] [PubMed]
  17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  18. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  19. S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
    [Crossref] [PubMed]
  20. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  21. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [Crossref] [PubMed]
  22. M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
    [Crossref] [PubMed]
  23. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
    [Crossref] [PubMed]
  24. T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).
  25. R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
    [Crossref] [PubMed]
  26. F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
    [Crossref] [PubMed]
  27. N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
    [Crossref] [PubMed]
  28. M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
    [Crossref] [PubMed]
  29. S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
    [Crossref] [PubMed]
  30. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
    [Crossref] [PubMed]
  31. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
    [Crossref] [PubMed]
  32. S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
    [Crossref] [PubMed]
  33. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
    [Crossref] [PubMed]
  34. G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
    [Crossref] [PubMed]
  35. T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
    [Crossref] [PubMed]
  36. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
    [PubMed]
  37. J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
    [Crossref] [PubMed]
  38. S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
    [Crossref] [PubMed]
  39. N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
    [Crossref]
  40. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
    [Crossref] [PubMed]
  41. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [Crossref]
  42. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  43. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  44. J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
    [Crossref] [PubMed]
  45. S. Denniss and J. Rush, “Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media,” FASEB J. 29(1 Supplement), 1029.1019 (2015).

2016 (1)

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

2015 (2)

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

2014 (5)

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

2013 (4)

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

2012 (4)

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

2011 (5)

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

2010 (5)

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
[Crossref] [PubMed]

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

2009 (2)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

2008 (3)

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

2007 (2)

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

2006 (1)

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

2005 (2)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2004 (3)

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

2001 (1)

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

2000 (1)

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

1990 (1)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

1987 (1)

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

1981 (1)

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Allen, C.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Anvari, B.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Badizadegan, K.

Bagatolli, L. A.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Baoukina, S.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Bassereau, P.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Behar, V.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Blehm, B. H.

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Borghi, N.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Bornschlögl, T.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Boss, D.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Bouvrais, H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Brady, S. T.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Brochard-Wyart, F.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Brownell, W. E.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Burger, E.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Cardenas, N.

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Carlier, M. F.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Celedon, A.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Chen, W.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Chithrani, D. B.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Chowers, Y.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Chun, I. S.

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Cross, S. E.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Cuvelier, D.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Dartmann, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Dasari, R. R.

de Jonge, N.

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

Deflores, L. P.

Delbridge, L. M. D.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Depeursinge, C.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Ding, H.

Dufrêne, Y. F.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Dunne, M.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Dziedzic, J. M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Euteneuer, U.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Fardin, M. A.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Farrell, B.

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Feld, M. S.

Feng, Y.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Ferraro, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Fraley, S. I.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Friedrich, L.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Gaschen, V.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Gauthier, N. C.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Gileadi, O.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Gillette, M.

Gillette, M. U.

Gimzewski, J. K.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Greve, B.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Grodzinsky, A. J.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Guo, S.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Gupta, S.

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Hartschuh, A.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Hochmuth, R. M.

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Hung, H.-H.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Hunziker, E. B.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Ipsen, J. H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Iskratsch, T.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

Iwai, H.

Jaffray, D. A.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Jin, Y. S.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Joanny, J. F.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Kajdacsy-Balla, A.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Kemper, B.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

Ketelhut, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Khatibzadeh, N.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Kikkawa, M.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Kim, D. H.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Krishnamurthy, R.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Le Clainche, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Li, X.

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liu, G. Y.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Lo, S. H.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Longmore, G. D.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Lulevich, V.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Macias, V.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Maeda, Y.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Marrink, S. J.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Mauser, N.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Méléard, P.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Meyer, T.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Michaeli, S.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Millet, L.

Mir, M.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mizuno, N.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Mohanty, S. K.

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Morfini, G.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Moses, E.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Mueller, J.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Müller, D. J.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Narita, A.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Nassoy, P.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Nechushtan, A.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Nelson, C. M.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Nemethova, M.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Ohkawa, T.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Ong, Z.-Y.

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Pfanzelter, J.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Pigino, G.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Pop, E.

Popescu, G.

Pott, T.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Przibilla, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Qian, F.

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Rao, J.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Raucher, D.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Resch, G. P.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Roca-Cusachs, P.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Rogers, J.

Rohrbach, A.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Romero, S.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Ross, F. M.

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

Sarshar, M.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schlessinger, J.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Schliwa, M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Schmeiser, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Schütze, K.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Selvin, P. R.

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Sheetz, M. P.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Shen, K.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Sheppard, C. J.

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Shih, Y. P.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Siedlik, M. J.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Small, J. V.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Spector, A. A.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

Sprinzak, D.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Sridharan, S.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Stauffer, T.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Stewart, J.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Szafranski, J. D.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Tangella, K.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Thiberge, S.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Tieleman, D. P.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Unarunotai, S.

Van Nhieu, G. T.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Varner, V. D.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Vaughan, J. C.

Vestergaard, C. L.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Vollmer, A.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

von Bally, G.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

Wang, Z.

Waugh, R. E.

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

Welch, M. D.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Wilson, T.

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Winkler, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Wirtz, D.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Wolfenson, H.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

Wong, W. T.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

York, J. D.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Zik, O.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Biochim. Biophys. Acta (1)

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Biophys. J. (4)

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Blood Cells Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Cell (1)

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Chem. Rev. (1)

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Cytometry A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

J. Neurosci. Res. (1)

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Methods (1)

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Nanomedicine (Lond.) (1)

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Nat. Cell Biol. (1)

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (2)

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

Nature (1)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optik (Stuttg.) (1)

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Osteoarthritis Cartilage (1)

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

PLoS Biol. (1)

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

PLoS One (1)

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Soft Matter (1)

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Other (1)

S. Denniss and J. Rush, “Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media,” FASEB J. 29(1 Supplement), 1029.1019 (2015).

Supplementary Material (1)

NameDescription
Visualization 1: MOV (3591 KB)      Dynamic visualization of membrane nanotube structure. QPM was performed at 3 fps. The playback is slowed to 2 fps for enhanced viewing. The arrow represents the magnitude and direction of tether reaction force. Color bar is in radians. Scale bar = 10

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the COMMIT platform. HL: Halogen lamp. CA: Condenser annulus. CL: Condenser lens. C: PZT controller. MO: Microscope objective. L: Nd:YVO4 laser. BE: Beam expander. M: Mirror. DM: Dichroic mirror. TL: Tube lens. BS: Beam splitter. FL: Focusing lens and IR filter. IP: Image plane and polarizer. L1 and L2: Achromatic doublets, f = 500 mm. SLM: Spatial light modulator. QPD: Quadrant photodetector. PZT: Piezoelectric translation stage.
Fig. 2
Fig. 2 (a): Comparison between topographical results of AFM and QPM for a custom made microchip. (ai): Inverted AFM image of the custom made microchip; the color bar is in nanometers. (aii): QPM-resolved image of the region shown in (ai); color bar is in radians. (aiii): Overlapped cross sections of (ai) and (aii) along the dotted lines. Scale bars in panels (ai) and (aii) = 2 µm. (bi): Pseudo-3D representation of a quantitative phase image of two sets of polystyrene nanospheres. (bii): Phase profile of 400 nm diameter nanospheres. (biii): Phase profile of 630 nm diameter nanospheres. Manufacturer-reported mean ± SD diameters of the nanospheres were 400 ± 17 nm and 630 ± 16 nm. Diameters measured using QPM were 425 ± 13 nm and 616 ± 16 nm. Color bar is in radians. Scale bar = 5 µm.
Fig. 3
Fig. 3 Pseudo-3D representation of the quantitative phase image of a tether extracted from a HEK-293 cell ≈ 40 s after elongation had stopped. Thinning along the tether axis results in a catenoid-like contour. Tether diameters at the A, B, and C boxed sections are measured as 456 nm, 253 nm, and 497 nm, respectively. Color bar is in radians. Scale bar = 5 µm.
Fig. 4
Fig. 4 Dynamic quantitative measurement of membrane tether structure and reaction force during various time intervals (see Visualization 1). (a): Tether formation interval. (b): Tether elongation interval. Tether reaction force decreased following the formation interval. (c): Increased pulling force resulted in tether rupture. (d): Lipid membrane reassembled on both ends of the ruptured tether and the direction of the reaction force was momentarily reversed (recoil). Increased diameters at both ends were resolved as a result of membrane folding. The arrows represent the magnitude and direction of tether reaction force. Color bars are in radians. Scale bars = 10 µm.
Fig. 5
Fig. 5 QPD voltage readout in response to a 20 nm PZT-controlled displacement of a 4.2 µm diameter microsphere through the focal spot of the laser beam, providing a signal-to-the-noise ratio of >2.
Fig. 6
Fig. 6 Stiffness calibration of the OTs. The Hookean stiffness (k) of the OTs is calculated as the slope of the linear fit to the displacement-force graph (F = kx).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δφ= tan 1 [ ( I 1 I 3 ) ( I 2 I 4 ) ]
φ= tan 1 [ βsin( Δφ ) 1+βcos( Δφ ) ]
β= | U 1 | | U 0 | .
φ= 2π λ ( n r n s ) d z .
F drag = 6πηνr 1 9 16 ( r h )+ 1 8 ( r h ) 3 45 256 ( r h ) 4 1 16 ( r h ) 5

Metrics