Abstract

Clinical monitoring of shock mainly depends on blood-oxygen-indices obtained from invasive blood sample tests. The central internal jugular central vein oxygenation level (ScvO2) has been considered as a gold standard indicator for shock prediction. We developed a noninvasive spatially-resolved near-infrared spectroscopy (SR-NIRS) to measure tissue blood oxygen saturation (StO2) surrounding the region of taking blood sample for the ScvO2 test in 25 patients with shock. StO2 values were found to be highly correlated (r = 0.84, p < 0.001) with ScvO2 levels and the concordance coefficient of 0.80 is high. The results suggest the potential of noninvasive SR-NIRS for bedside shock monitoring.

© 2015 Optical Society of America

1. Introduction

Shock may result in an acute blood flow reduction, metabolic abnormalities, anaerobic metabolism, cellular and organ dysfunction, and irreversible damage and death if prolonged [1]. The shock resulting from inevitable hemorrhage during surgery and traumatic injury is a fatal complication (up to 50% in mortality), frequently leading to early deaths [2,3]. Estimation of shock severity is crucial to guide clinicians for making treatment plans and for evaluating therapeutic effects [4].

The widely used clinical method to determine shock severity is to measure blood sample oxygen indices. Various oxygen-related indices were proposed as shock indicators, such as oxygen delivery (DO2), oxygen consumption (VO2), blood lactate, pulse oxygen saturation (SpO2), central venous oxygen saturation (ScvO2), artery oxygen saturation (SaO2), and partial pressure of oxygen (PO2). Among these indicators, only SpO2 can be detected noninvasively by a finger-sensor. However, finger pulse oximetry works ineffectively during shock because of the poor peripheral blood perfusion in the finger [5]. The global indicators of DO2 and VO2 may not catch up regional hypoperfusion [6]. Blood lactate is not sensitive to pre-existing medical conditions [7]. PO2 has been used for monitoring shock in an uncontrolled study with a small number of patients [4]. ScvO2 [8] and SaO2 are accepted to be accurate and objective for shock monitoring [9], and ScvO2 is commonly regarded as a gold standard [8]. However, the invasive and intermittent procedures to obtain these acceptable indicators (i.e., PO2, ScvO2, SaO2) limit the use for continuous shock monitoring. As a result, the clinician may miss the best time window to rescue the patient. Therefore, it’s crucial to explore a noninvasive technique to continuously monitor shock.

Near-infrared spectroscopy (NIRS) permits noninvasive and continuous measurements of tissue blood oxygenation. The NIRS devices are usually portable, permitting bedside monitoring. There have been recently exploratory studies using NIRS for shock monitor [4, 9–15]. Some of them were carried out on animal models [12,13] or healthy human subjects [14]. A few were performed in patients either invasively with optical sensors inserted into subcutaneous and intramuscular sites [4,15] or noninvasively with optical probes placed on the peripheral muscles [9–11]. However, shock usually results in a poor peripheral blood circulation [5], leading to an insensitive measurement.

Shock occurs mostly because of insufficient blood oxygen to the body. Tissue blood oxygen saturation (StO2) measured at an appropriate region may be a good indicator of shock state [9–11]. In this study, we investigated the correlations between StO2 and ScvO2, SaO2, and PO2, and explored the use of StO2 as an indicator for shock.

2. Methods and materials

2.1. Spatially-resolved NIRS

We have developed a SR-NIRS to monitor StO2 in the region surrounding the internal jugular vein [16]. Two detectors and a 3-wavelengths (735, 805, and 850 nm) integrated LED were integrated into a probe (Fig. 1(a)) [17,18]. The LED was controlled by a micro-controller to be “on” or “off” alternatively. Relatively larger source-detector distances (2.4 cm and 2.7 cm) were used to probe deeper tissue property around the internal jugular vein, which located ~1 cm beneath the skin/probe (Fig. 1(b), 1(c), Fig. 2), and thus yielding more sensitive signals for the comparison of StO2 and ScVO2 measurements. The diameter of each detector was ~0.6 cm, making it impossible to arrange S-Ds in a linear pattern. Thus they were configured in a shape of triangle. Figure 2(b) shows Monte Carlo Simulation [19–21] of NIRS signal sensitivity profile with our probe design, suggesting that the sampling volume of our probe covered the tissue surrounding the central internal jugular vein. The size and depth of the veins in shock patients were determined by ultrasonographs. The thicknesses of skin and fat over the measured population were 0.2 ± 0.04 cm (mean ± standard deviation) measured by a Vernier caliper.

 figure: Fig. 1

Fig. 1 Portable spatially-resolved near-infrared spectroscopy (SR-NIRS) device for bedside shock monitoring. (a) SR-NIRS probe placement; (b) SR-NIRS shock monitor device; (c) Bedside shock monitoring.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 (a) Ultrasonograph of internal jugular central vein and (b) Monte Carlo simulation of photon paths within the tissues surrounding the veins.

Download Full Size | PPT Slide | PDF

The calculation of local StO2 was accomplished by converting from the detected light intensity changes based on the modified Beer-Lambert law [22,23]. The following formula describes the relationship between the measured optical density (OD), tissue optical properties, and the source-detector spacing (ρ):

OD=log[Rapp0(ρ,ρ0)Rapp(ρ,ρ0)]=μeffμeff(cal)2.3ρ+log[μt'μt'(cal)]+log[μeff(cal)+(1/ρ0)μeff+(1/ρ0)]

Here, ρ0 is the average of the chosen maximum and minimum source-detector separations in the probe, Rapp is the spatial dependence of the approximated diffuse reflectance, andμeff=3μa(μa+μs(1g)). μa is the absorption coefficient, μsis the scattering coefficient, and g is the anisotropic factor. cal means the calibration control. We then plotted OD changes as a function of ρ and the slopeλi of the plotted curve was calculated. The correlation between slopeλi and μaλi was calculated as follows:

slopeλ1slopeλ2=μeffλ1μeffλ2=3μaλ1(μaλ1+μsλ1(1g))3μaλ2μsλ1(1g)μaλ1μaλ2

The relationship between μa and the concentrations of deoxy-hemoglobin (Hb) and oxy-hemoglobin (HbO2) can be described as follows:

{μaλ1=εHbλ1[Hb]+εHbO2λ1[HbO2]μaλ2=εHbλ2[Hb]+εHbO2λ2[HbO2]

Here, εHbλi and εHbO2λirepresents the extinction coefficient of Hb and HbO2 respectively. The mathematical definition of StO2 is given by:

StO2=[HbO2][HbO2+Hb]×100%

By substituting Eqs. (3) and (4) into Eq. (2), StO2 was obtained as follows:

StO2=εHbλ2slopeλ12εHbλ1slopeλ22εHbλ2slopeλ12εHbλ1slopeλ22+εHbO2λ1slopeλ22εHbO2λ2slopeλ12×100%

2.2 Subjects and experimental protocol

Twenty-five patients with shock were recruited from Xinhua Hospital in Shanghai of China with their written informed consents approved by the ethics committee (Approval No. XHEC-D-2014-005). Patients were 67.3 ± 16.6 years old. StO2 measurements were performed using our SR-NIRS device in conjunction with other conventional shock monitoring procedures. The StO2 measurements were carried out either at the end of shock treatment (8 males and 5 females) or one day after (7 males and 5 females). The internal jugular central venous catheterization could not be performed on the former group of patients since the measurement site was still occupied to perform tracheal intubation to obtain respiration-oxygen delivery at that point.

2.3 Data collection and analysis

We used the ultrasound to locate the internal jugular central vein and to aid the placement of SR-NIRS probe (see Fig. 2(a), Fig. 1(b), 1(c)). The probe position was fine-tuned and fixed until the signal became stable. After collecting SR-NIRS data for 5 minutes, blood sampling through the central venous catheter was performed to obtain the indices of ScvO2, SaO2, and PO2. We also collected SpO2 data from finger sensor.

All data analysis was performed with MATLAB R2010b, MathWorks, USA. Statistical significance was declared for p values < 0.05. We performed correlation analysis of StO2 with ScvO2, PO2, and SaO2 respectively and reported the Pearson’ correlation coefficient r, which ranged from 0 to 1 to estimate linear correlation extent. To quantify the relationship of StO2 with combinations of the acceptable blood oxygen indices, we fit multiple linear regression models. We also test the consistency between StO2 and ScvO2 and reported Lin’s concordance coefficient [24], which combines a measure of precision and accuracy. A Bland-Altman plot was carried out to visualize the extent of agreement between the indicators.

3. Results

SpO2 measurements were not reliable on our patients with shock; almost all showed low invalid values or no readout except one patient had a value 95% which was in the valid range.

The comparisons between the StO2 measured by SR-NIRS and other shock-monitoring clinical measures are shown in Fig. 3, 4 and Table 1. A significant linear relationship was observed (r > 0.843, p < 0.001) between the StO2 and ScvO2 (see Fig. 3(a)), with a slope (95% confidence interval) of 0.96 (0.53 to 1.39) (see Fig. 4(a)). Only three data points fell outside 95% confidence level. The Bland-Altman plot (Fig. 4(b)) for these two measurements also demonstrated an agreement, with a mean difference of 4.16% (−6.87% to 15.20%). The concordance coefficient between StO2 and ScvO2 of 0.804 is high. Additionally, StO2 was found to be correlated with SaO2 (r = 0.501, p = 0.011; see Fig. 3(b)) and PO2 (r = 0.465, p = 0.019; see Fig. 3(c)) and there were significant regressions between StO2 and other acceptable blood oxygen indices (Table 1). The corresponding residual analysis showed only two patients had outlier data, also indicating the robust regression relationships.

 figure: Fig. 3

Fig. 3 The correlations between StO2 and conventional blood oxygen indices, represented by scatter plot with least-squares fitted lines added.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 NIRS-measured StO2 compared to the gold standard ScvO2 from the blood sample test. (a) The solid line represents the best fit to the data; the dashed line indicates the perfect equivalent; and the dot line denotes the 95% confidence interval for StO2. (b) Bland-Altman plot of the deference between the StO2 and ScvO2 as well as the mean difference (solid horizontal line) between these two parameters. The dash lines indicate the 95% limits of an agreement.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Multiple linear regression analysis (MLR) of StO2 with conventional blood oxygen indices

There were no significant differences in StO2, SaO2 and PO2 between the measures at different days (i.e., the day at treatment versus one day after treatment) (p > 0.16), hence it is not unreasonable to speculate that ScvO2 might show obscure difference as well. It may contribute to the effective resuscitation on the shocks.

4. Discussion and conclusion

Continuous monitoring of shock is crucial for clinicians to perform treatment timely and evaluate therapeutic effect so that irreversible injuries can be avoided. However, currently available methodologies for shock monitoring rely on frequent blood sampling with internal jugular central venous catheterization, which is invasive and discontinuous. In this study, we demonstrated that the StO2 level measured at the tissues surrounding the internal jugular vein by noninvasive SR-NIRS may be a shock indicator. The SR-NIRS used in this study enabled absolute measurement of StO2. Data from 25 patients with shock demonstrate significant correlations between StO2 and the gold standard ScvO2 as well as other acceptable blood oxygen indices. These results support the use of SR-NIRS as a noninvasive, continuous tool for bedside monitoring of shock.

Our study is the first exploration of the StO2 measured by NIRS at the region surrounding the internal jugular central vein as a new shock indicator. Previous studies using NIRS to monitor StO2 in shocks were performed in the peripheral area including finger, deltoid muscle, subcutaneous tissue, and thenar eminence [11,13]. However, shock usually results in poor peripheral blood circulation, making peripheral measurements unreliable, as seen in this study with SpO2 measurements. By contrast, we chose the tissue surrounding internal jugular central veins because the gold standard ScvO2 sampling is usually taken from this vein [11] and this site roughly belongs to splanchnic circulation which is crucial for shock monitoring. We may also explore other potential sites such as patient’s head in the future as cerebral circulation is apparently critical for shock monitoring.

The StO2 measured by NIRS showed strong correlation and high concordance with the gold standard ScvO2, which might be because a portion of the signal ScvO2 goes into the StO2 (see Fig. 2(b)) measured in the tissue surrounding the internal jugular central vein. Meanwhile, the StO2 showed weak correlations with other indicators (i.e., SaO2 and PO2), indicating that the StO2 measurement performed closer to the vein for the ScvO2 test is supper than other places for monitoring shock states. However, the thresholds to separate healthy subjects and shock patients using ScvO2 and StO2 have not been established yet, and further investigations including healthy subjects are needed.

In summary, we have demonstrated that NIRS measurements of StO2 in the internal jugular central venous region provide valuable information for shock monitoring. The NIRS-measured StO2 has been verified by comparing to the conventional blood oxygen indices, especially ScvO2. SR-NIRS device can be used at the bedside for continuous monitoring of shock, and thus has the potential to become a clinical tool for shock management.

References and links

1. M. C. Houston, “Pathophysiology of shock,” Crit. Care Nurs. Clin. North Am. 2(2), 143–149 (1990). [PubMed]  

2. A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995). [CrossRef]   [PubMed]  

3. R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989). [CrossRef]   [PubMed]  

4. D. C. Elliott, “An evaluation of the end points of resuscitation,” J. Am. Coll. Surg. 187(5), 536–547 (1998). [CrossRef]   [PubMed]  

5. D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010). [CrossRef]   [PubMed]  

6. R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996). [CrossRef]   [PubMed]  

7. S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007). [CrossRef]   [PubMed]  

8. R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013). [CrossRef]   [PubMed]  

9. B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

10. F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002). [CrossRef]   [PubMed]  

11. B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000). [CrossRef]   [PubMed]  

12. M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997). [CrossRef]   [PubMed]  

13. G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999). [CrossRef]   [PubMed]  

14. M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012). [CrossRef]   [PubMed]  

15. K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994). [CrossRef]   [PubMed]  

16. T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

17. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2(11), 3047–3057 (2011). [CrossRef]   [PubMed]  

18. C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011). [CrossRef]   [PubMed]  

19. T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010). [CrossRef]  

20. T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011). [CrossRef]   [PubMed]  

21. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [CrossRef]   [PubMed]  

22. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999). [CrossRef]   [PubMed]  

23. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995). [CrossRef]   [PubMed]  

24. L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255–268 (1989). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. C. Houston, “Pathophysiology of shock,” Crit. Care Nurs. Clin. North Am. 2(2), 143–149 (1990).
    [PubMed]
  2. A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
    [Crossref] [PubMed]
  3. R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989).
    [Crossref] [PubMed]
  4. D. C. Elliott, “An evaluation of the end points of resuscitation,” J. Am. Coll. Surg. 187(5), 536–547 (1998).
    [Crossref] [PubMed]
  5. D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
    [Crossref] [PubMed]
  6. R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
    [Crossref] [PubMed]
  7. S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
    [Crossref] [PubMed]
  8. R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
    [Crossref] [PubMed]
  9. B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).
  10. F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
    [Crossref] [PubMed]
  11. B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
    [Crossref] [PubMed]
  12. M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
    [Crossref] [PubMed]
  13. G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
    [Crossref] [PubMed]
  14. M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
    [Crossref] [PubMed]
  15. K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
    [Crossref] [PubMed]
  16. T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.
  17. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2(11), 3047–3057 (2011).
    [Crossref] [PubMed]
  18. C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
    [Crossref] [PubMed]
  19. T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
    [Crossref]
  20. T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
    [Crossref] [PubMed]
  21. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [Crossref] [PubMed]
  22. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
    [Crossref] [PubMed]
  23. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
    [Crossref] [PubMed]
  24. L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255–268 (1989).
    [Crossref] [PubMed]

2013 (1)

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

2012 (1)

M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
[Crossref] [PubMed]

2011 (3)

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express 2(11), 3047–3057 (2011).
[Crossref] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
[Crossref] [PubMed]

2010 (2)

T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
[Crossref]

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

2007 (1)

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

2005 (1)

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

2002 (2)

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

2000 (1)

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

1999 (2)

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

1998 (1)

D. C. Elliott, “An evaluation of the end points of resuscitation,” J. Am. Coll. Surg. 187(5), 536–547 (1998).
[Crossref] [PubMed]

1997 (1)

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

1996 (1)

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

1995 (2)

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

1994 (1)

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

1990 (1)

M. C. Houston, “Pathophysiology of shock,” Crit. Care Nurs. Clin. North Am. 2(2), 143–149 (1990).
[PubMed]

1989 (2)

R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989).
[Crossref] [PubMed]

L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255–268 (1989).
[Crossref] [PubMed]

Amotegui, J.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Angus, D. C.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Annane, D.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Annas, C.

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

Baue, A. E.

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

Beale, R. J.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Beilman, G. J.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

Bellomo, R.

M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
[Crossref] [PubMed]

Benjamin, D.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Bermudez, K. M.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Biallas, M.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Billiar, T. R.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Blackbourne, R.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Boas, D.

Boas, D. A.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Bucher, H. U.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Chance, B.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Cocanour, C. S.

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

Cohan, S. M.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Cohn, S. M.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

Cowley, R. D.

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

Creteur, J.

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Crookes, B. A.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Culver, J.

Daughters, K.

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

De Backer, D.

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Dellinger, R. P.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Deutschman, C. S.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Douglas, I. S.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Doyle, C. A.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Duan, M.

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Duncan,

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Dunn, A.

Durham, R. M.

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

Elliott, D. C.

D. C. Elliott, “An evaluation of the end points of resuscitation,” J. Am. Coll. Surg. 187(5), 536–547 (1998).
[Crossref] [PubMed]

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Fauchère, J. C.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Favory, R.

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Franceschini, M. A.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Gerlach, H.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Gong, H.

T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
[Crossref] [PubMed]

T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
[Crossref]

Gratton, E.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Greisen, G.

Groehler, K. E.

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

Habib, C. I.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Hallal, A.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Harbrecht, B. G.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Hopf, H. W.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Houston, M. C.

M. C. Houston, “Pathophysiology of shock,” Crit. Care Nurs. Clin. North Am. 2(2), 143–149 (1990).
[PubMed]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Hyttel-Sorensen, S.

Jaeschke, R.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Jenny, C.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Kelly, E.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Kleinpell, R. M.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Knudson, M. M.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Lazaron, V.

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

Levy, M. M.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Li, K.

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Li, P.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Li, T.

T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
[Crossref] [PubMed]

T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
[Crossref]

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Lin, L. I.

L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255–268 (1989).
[Crossref] [PubMed]

Lipcsey, M.

M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Luo, Q.

T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
[Crossref] [PubMed]

T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
[Crossref]

Machado, F. R.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Mackersie, R. C.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Manning, R.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Marvin, R. G.

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Mazuski, J. E.

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

McCollum, C. N.

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

McKinley, B. A.

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

Moore, E. E.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

Moore, F. A.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

Morabito, D.

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

Moreno, R.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Nathens, A. B.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

Neunaber, K.

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

Nunnally, M. E.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Opal, S. M.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Ortner, J. P.

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

Osborn, T. M.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Ospina-Tascon, G.

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Pedowitz, R. A.

R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989).
[Crossref] [PubMed]

Peitzman, A. B.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Proctor, K. G.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Proctor, M. S.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Puyana, J. C.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

Reinhart, K.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Rhee, P.

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

Rhodes, A.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Riera, J.

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Ruan, Z.

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Rubenfeld, G. D.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Salgado, D.

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Scannell, G.

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

Schulman, R.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Sevransky, J. E.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Shackford, S. R.

R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989).
[Crossref] [PubMed]

Shapiro, M. J.

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

Simmons, R. L.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Soffer, F.

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Sorensen, L. C.

Sprung, C. L.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Stott, J.

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

Sun, Y.

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Thorniley, M. S.

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

Tominaga, G. T.

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

Torella, F.

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

Townsend, S. R.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Trajkovic, I.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Udekwu, A. O.

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Vincent, J. L.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

Waxman, K.

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

Webb, S.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

Woinarski, N. C. Z.

M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
[Crossref] [PubMed]

Wolf, M.

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

Yodh, A. G.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Zhang, Y.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Zhao, Y.

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Ann. Intensive Care (1)

M. Lipcsey, N. C. Z. Woinarski, and R. Bellomo, “Near infrared spectroscopy (NIRS) of the thenar eminence in anesthesia and intensive care,” Ann. Intensive Care 2(1), 11 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biometrics (1)

L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics 45(1), 255–268 (1989).
[Crossref] [PubMed]

Crit. Care Nurs. Clin. North Am. (1)

M. C. Houston, “Pathophysiology of shock,” Crit. Care Nurs. Clin. North Am. 2(2), 143–149 (1990).
[PubMed]

Curr. Probl. Surg. (1)

A. B. Peitzman, T. R. Billiar, B. G. Harbrecht, E. Kelly, A. O. Udekwu, and R. L. Simmons, “Hemorrhagic shock,” Curr. Probl. Surg. 32(11), 925–1002 (1995).
[Crossref] [PubMed]

Intensive Care Med. (2)

D. De Backer, G. Ospina-Tascon, D. Salgado, R. Favory, J. Creteur, and J. L. Vincent, “Monitoring the microcirculation in the critically ill patient: current methods and future approaches,” Intensive Care Med. 36(11), 1813–1825 (2010).
[Crossref] [PubMed]

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, “Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012,” Intensive Care Med. 39(2), 165–228 (2013).
[Crossref] [PubMed]

J. Am. Coll. Surg. (1)

D. C. Elliott, “An evaluation of the end points of resuscitation,” J. Am. Coll. Surg. 187(5), 536–547 (1998).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

C. Jenny, M. Biallas, I. Trajkovic, J. C. Fauchère, H. U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[Crossref] [PubMed]

T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 045001 (2011).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

T. Li, H. Gong, and Q. Luo, “MCVM: Monte Carlo modeling of photon migration in voxelized media,” J. Innov. Opt. Health Sci. 3(2), 91–102 (2010).
[Crossref]

J. Trauma (6)

K. Waxman, C. Annas, K. Daughters, G. T. Tominaga, and G. Scannell, “A method to determine the adequacy of resuscitation using tissue oxygen monitoring,” J. Trauma 36(6), 852–858 (1994).
[Crossref] [PubMed]

B. A. McKinley, R. G. Marvin, C. S. Cocanour, and F. A. Moore, “Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry,” J. Trauma 48(4), 637–642 (2000).
[Crossref] [PubMed]

M. M. Knudson, K. M. Bermudez, C. A. Doyle, R. C. Mackersie, H. W. Hopf, and D. Morabito, “Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock,” J. Trauma 42(4), 608–616 (1997).
[Crossref] [PubMed]

R. M. Durham, K. Neunaber, J. E. Mazuski, M. J. Shapiro, and A. E. Baue, “The Use of Oxygen Consumption and Delivery as Endpoints for Resuscitation in Critically III Patients,” J. Trauma 41(1), 32–40 (1996).
[Crossref] [PubMed]

S. M. Cohn, A. B. Nathens, F. A. Moore, P. Rhee, J. C. Puyana, E. E. Moore, G. J. Beilman, and StO2 in Trauma Patients Trial Investigators, “Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation,” J. Trauma 62(1), 44–55 (2007).
[Crossref] [PubMed]

R. A. Pedowitz and S. R. Shackford, “Non-cavitary hemorrhage producing shock in trauma patients: incidence and severity,” J. Trauma 29(2), 219–222 (1989).
[Crossref] [PubMed]

J. Trauma Acute Care Surg. (1)

B. A. Crookes, S. M. Cohan, J. Amotegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, R. Blackbourne, D. Benjamin, F. Soffer, C. I. Habib, R. Schulman, Duncan, and K. G. Proctor, “Can near-infrared spectroscopy identify the severity of shock in trauma patients?” J. Trauma Acute Care Surg. 58(4), 806–816 (2005).

Opt. Express (1)

Phys. Med. Biol. (2)

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[Crossref] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[Crossref] [PubMed]

Shock (2)

F. Torella, R. D. Cowley, M. S. Thorniley, and C. N. McCollum, “Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?” Shock 18(5), 440–444 (2002).
[Crossref] [PubMed]

G. J. Beilman, K. E. Groehler, V. Lazaron, and J. P. Ortner, “Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock,” Shock 12(3), 196–200 (1999).
[Crossref] [PubMed]

Other (1)

T. Li, Y. Zhao, K. Li, Z. Ruan, M. Duan, and Y. Sun, “Study on shock monitoring using a space-resolved NIRS,” PIBM 2014, Proc. SPIE. in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Portable spatially-resolved near-infrared spectroscopy (SR-NIRS) device for bedside shock monitoring. (a) SR-NIRS probe placement; (b) SR-NIRS shock monitor device; (c) Bedside shock monitoring.
Fig. 2
Fig. 2 (a) Ultrasonograph of internal jugular central vein and (b) Monte Carlo simulation of photon paths within the tissues surrounding the veins.
Fig. 3
Fig. 3 The correlations between StO2 and conventional blood oxygen indices, represented by scatter plot with least-squares fitted lines added.
Fig. 4
Fig. 4 NIRS-measured StO2 compared to the gold standard ScvO2 from the blood sample test. (a) The solid line represents the best fit to the data; the dashed line indicates the perfect equivalent; and the dot line denotes the 95% confidence interval for StO2. (b) Bland-Altman plot of the deference between the StO2 and ScvO2 as well as the mean difference (solid horizontal line) between these two parameters. The dash lines indicate the 95% limits of an agreement.

Tables (1)

Tables Icon

Table 1 Multiple linear regression analysis (MLR) of StO2 with conventional blood oxygen indices

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OD=log[ R app0 ( ρ, ρ 0 ) R app ( ρ, ρ 0 ) ]= μ eff μ eff ( cal ) 2.3 ρ+log[ μ t ' μ t ' ( cal ) ]+log[ μ eff ( cal )+( 1/ ρ 0 ) μ eff +( 1/ ρ 0 ) ]
slop e λ 1 slop e λ 2 = μ eff λ 1 μ eff λ 2 = 3 μ a λ 1 ( μ a λ 1 + μ s λ 1 (1g)) 3 μ a λ 2 μ s λ 1 (1g) μ a λ 1 μ a λ 2
{ μ a λ 1 = ε Hb λ 1 [Hb]+ ε Hb O 2 λ 1 [Hb O 2 ] μ a λ 2 = ε Hb λ 2 [Hb]+ ε Hb O 2 λ 2 [Hb O 2 ]
StO 2 = [Hb O 2 ] [Hb O 2 +Hb] ×100%
StO 2 = ε Hb λ 2 slop e λ 1 2 ε Hb λ 1 slop e λ 2 2 ε Hb λ 2 slop e λ 1 2 ε Hb λ 1 slop e λ 2 2 + ε Hb O 2 λ 1 slop e λ 2 2 ε Hb O 2 λ 2 slop e λ 1 2 ×100%

Metrics