Abstract

The editors introduce the Biomedical Optics Express feature issue on “Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices.” This topic was the focus of a technical workshop that was held on November 7–8, 2011, in Washington, D.C. The feature issue includes 13 contributions from workshop attendees.

© 2012 OSA

The impetus of the clinical applications of optical medical imaging technologies has become critical in recent years. One of the key advantages of the optical imaging approach is its minimal invasiveness, which allows for safe practices and enables progressive in vivo optical diagnostics and treatment [112]. The large variability in key tissue optical properties, such as refractive index, scattering coefficient, and absorption coefficient, in biological media has been of major interest for achieving reliable diagnoses of disease and for quantifying specific features in the tissues [1318]. In addition, recent studies have demonstrated that many optical imaging modalities are complementary to conventional radiation imaging techniques. Therefore, multimodal approaches combining optical and radiological imaging techniques have been explored [1921].

As illustrated in the translational research map in Fig. 1 , optical medical imaging devices are initially developed in basic research fields, mostly in academia, in order to perform proof-of-principle experiments, designing prototypes for conceptualization of the imaging capability, and testing the feasibility of the measurement concepts. Advancing optical medical imaging technologies from concept to reality requires characterization, calibration, and validation tools [22,23]. These tools would include artifacts or virtual tissue standards (known as “phantoms”) that test and optimize hardware, software, and applications; provide training to users; and ensure comparability of measurements across instruments and institutions [2426].

 

Fig. 1 Translational research map of medical devices from the basic research state to practical application in clinical settings.

Download Full Size | PPT Slide | PDF

The phantoms are “materials or artifacts that are used to test and evaluate the measurement performance of different measuring systems for specific tasks,” and their specific properties may vary depending on their use, such as device validation and inter-laboratory comparisons [27]. In other words, in addition to their primary use for proof-of-principle studies, phantoms are used for benchmarking system performance and ensuring data consistency across multiple instruments and even vendors. In general, the application-dependent properties of the ideal phantoms are discussed elsewhere [28]. Phantoms used for regulatory clearance and quality assurance during clinical trials and field use will have to be fabricated to the same quality as the biomedical optical devices they are serving. In addition, their physical properties will have to be accurately known, and, for the most effective quantitative applications, they may be traceable to the international system (SI) of units [29].

On November 7–8, 2011, in Washington D.C., The Catholic University of America, with the support of the National Institute of Standards and Technology, hosted a workshop on “standards for phantoms for the performance evaluation and validation of optical medical imaging devices.” During this workshop, 20 invited speakers gave technical presentations to address measurement challenges in quantitative optical medical imaging and the use of phantoms to accelerate the broad employment of optical imaging devices. The technical discussions focused on the use of phantoms for standards in optical coherence tomography and in reflectance/transmission mode spectroscopic imaging technologies: (1) to achieve measurement standards in optical medical imaging devices and potential incorporation of phantom-based test methods into biophotonic imaging standards and FDA guidance documents (Jeeseong Hwang, Albert Cerussi, Joshua Pfefer, and Bruce Drum); (2) to resolve measurement challenges towards quantitative clinical applications of optical imaging devices (Guillermo Tearney, Jessica Ramella-Roman, Ron Xu, David Allen, Joseph Rice, Edward Livingston, and Maritoni Litorja); (3) to overcome barriers and take opportunities towards standards with ideal phantoms (Pete Tomlins, Steve Jacques, Irving Bigio, Elizabeth Hillman, Jean-Pierre Bouchard, and Guy Lamouche). There were also presentations to review recent phantom research efforts (“The history of tissue-simulating phantoms” by Brian Pogue and “Phantoms and quantitative optical diagnostic imaging” by Scott Prahl) and to address future directions (“Phantoms for the future” by Robert Nordstrom) as well. This feature issue of Biomedical Optics Express showcases selected contributions made by speakers and attendees to this workshop. The key highlights of contributed papers in this feature volume are briefly presented below.

Hyperspectral imaging (HSI) [30,31] has the potential to achieve high spatial resolution and high functional sensitivity for noninvasive assessment of oxygen level in cells and tissues [32,33]. However, clinical acceptance of hyperspectral imaging in ischemic wound assessment is hampered by its poor reproducibility, low accuracy, and misinterpreted biology. Ronald Xu et al. have proposed a digital tissue phantom (DTP) platform [34] for quantitative calibration and performance evaluation of spectral wound imaging devices. The technical feasibility of such a DTP platform was demonstrated by both in vitro and in vivo experiments. Samarov et al. presented a statistical analysis framework for HSI analysis validation by comparing the performance of two algorithms, the Least Absolute Shrinkage and Selection Operator (LASSO) [35] and the Spatial LASSO (SPLASSO) [36], extracting the abundance fraction of water soluble dyes in mixtures printed on microarray chips that served as HSI test phantoms. The design and fabrication of custom-tailored microarrays [37] for use as phantoms in the characterization of HSI is described by Clarke et al. In this work, as the shape of the dye spots in the array results in significant scattering signals, which can be used to test image analysis algorithms, the separation of the scattering signals allows elucidation of individual spectra of different dyes.

In optical coherence tomography (OCT) [38,39], Guy Lamouche et al. reviewed the development of OCT phantoms that are capable of mimicking a number of tissue properties and discussed durable phantoms that can replicate not only optical properties, but also mechanical and structural properties of a range of tissues. Robert Chang et al. reports on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving OCT with general applicability to a variety of three-dimensional optical sectioning platforms, including confocal microscopy and OCT. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Anant Agrawal et al. have designed, fabricated, and tested a nanoparticle-embedded phantom incorporated into a model eye in order to characterize the point spread function of retinal OCT devices in three dimensions under realistic imaging conditions. This model eye-based phantom can provide retinal OCT device developers and users a means to rapidly, objectively, and consistently assess the point spread function, a fundamental imaging performance metric [40].

For quantitative evaluation of the wavelength and/or morphology-dependent spectral properties, including absorption and reduced scattering coefficients of biological tissue layers is important for elucidating light propagation for quantitative optical spectroscopy of tissue layers. Quanzeng Wang et al. evaluated a technique based on neural network inverse models trained with radial reflectance data from layered tissue Monte Carlo simulations as an approach for broadband measurement of layered mucosal tissue optical properties. As the sensitivity to surface profile of noncontact optical imaging techniques leads to incorrect measurements of optical properties and consequently physiological parameters, Thu Nguyen et al. proposed an experimental method to correct the effect of surface profile on spectral images using three-dimensional (3D) phantoms of semi-identical shape constructed using an inexpensive 3D printer.

Steven Jacques et al. demonstrated that a reflectance confocal scanning laser microscopy measures the decay of reflected signal as the focus moves deeper into solutions of nanoparticles, absorbing and scattering materials, and typical reflectance standards. These results are mapped into the scattering coefficient and anisotropy of scattering, providing a new approach for measuring tissue optical properties using confocal microscopy. In fluorescence nanoparticle-including optical phantoms for quantitative molecular imaging standards, the optical properties of clustered fluorescent nanoparticles such as quantum dots (QDs) are essential to the design of QD-based optical phantoms. In a report by HyeongGon Kang et al., controlled assembly of a fixed number of QDs into single clusters and multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the optical properties of QDs in a single or a clustered state. This study is presented in an effort to guide the design and evaluation of QD-based phantom materials [41] for the validation of the PL measurements for quantitative molecular imaging in a variety of biomedical applications.

In phantoms involving fluid materials, as noninvasive biophotonic techniques to measure flow in the human vasculature have been developed and employed [4247], appropriate calibration and validation techniques dedicated to these particular measurements have recently become important. Long Luu et al. introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms to mimic vasculature geometries to accommodate a particular experimental scenario. When using Intralipid phantoms and mimicking tissue scattering properties [48], fiber optic reflectance devices may be used. Stephen Kanick et al. investigated the spectral response of specific device configurations, and the findings are important in characterizing the response over a set range of geometrical perturbations involving device configurations such as fiber size and source-detector distance. The results show the need to consider the influence of scattering phase function when using measurements of Intralipid to either characterize or calibrate a reflectance device that collects light close to the source.

Through active scientific interactions among the stakeholders in the field of optical medical imaging, the quality of healthcare could improve. However, the development of suitable working standards that can be used in any clinic to ascertain the working order of measurement instrumentation are necessary to achieve optimal results. When this characterization also addresses natural person-to-person variability of the tissue optical properties, a wide range of tissues types are of clinical interest for data collection. With good measurement practices facilitated by well-designed phantoms, erroneous sources of variability from instruments and measurement protocols can be minimized, isolating the variability of the tissue itself, both within and among individuals. Studies in this feature volume address important roles of optical phantoms to accelerate realization of optical medical imaging techniques in the clinic.

Acknowledgments

The workshop was supported by National Institute of Standards and Technology Innovation in Measurement Science program on “Optical Medical Imaging for Clinical Applications.”

References and links

1. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002). [CrossRef]   [PubMed]  

2. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging 16(4), 378–387 (2002). [CrossRef]   [PubMed]  

3. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997). [CrossRef]   [PubMed]  

4. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000). [CrossRef]   [PubMed]  

5. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 727–735 (1997). [CrossRef]   [PubMed]  

6. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2(5), 388–417 (2000). [CrossRef]   [PubMed]  

7. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40(4), 501–510 (2003). [CrossRef]   [PubMed]  

8. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002). [CrossRef]   [PubMed]  

9. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef]   [PubMed]  

10. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74(6), 817–824 (2001). [CrossRef]   [PubMed]  

11. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002). [CrossRef]   [PubMed]  

12. B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol. 31(2), 125–133 (1986). [CrossRef]   [PubMed]  

13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef]   [PubMed]  

14. S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am. 72(3), 531–558 (1992). [PubMed]  

15. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31(18), 3509–3517 (1992). [CrossRef]   [PubMed]  

16. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990). [CrossRef]   [PubMed]  

17. W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol. 33(4), 437–454 (1988). [CrossRef]   [PubMed]  

18. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28(24), 5243–5249 (1989). [CrossRef]   [PubMed]  

19. W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med. 49(Suppl 2), 113S–128S (2008). [CrossRef]   [PubMed]  

20. M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke 35(11_suppl_1), 2632–2634 (2004). [CrossRef]  

21. W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J. 19(14), 2008–2010 (2005). [PubMed]  

22. M. B. Aldrich, M. V. Marshall, E. M. Sevick-Muraca, G. Lanza, J. Kotyk, J. Culver, L. V. Wang, J. Uddin, B. C. Crews, L. J. Marnett, J. C. Liao, C. Contag, J. M. Crawford, K. Wang, B. Reisdorph, H. Appelman, D. K. Turgeon, C. Meyer, and T. Wang, “Seeing it through: translational validation of new medical imaging modalities,” Biomed. Opt. Express 3(4), 764–776 (2012). [CrossRef]   [PubMed]  

23. US FDA Guidance documents on “General and Cross-Cutting Topics,” http://www.fda.gov/RegulatoryInformation/Guidances/ucm122044.htm

24. G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr. 3(2), 197–203 (1979). [CrossRef]   [PubMed]  

25. J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol. 68(806), 160–164 (1995). [CrossRef]   [PubMed]  

26. S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol. 23(6), 455–462 (1988). [CrossRef]   [PubMed]  

27. “About NIST Standard Reference Materials®, SRM,” http://www.nist.gov/srm/definitions.cfm

28. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef]   [PubMed]  

29. “Traceability - NIST Policy and Supplementary Materials” http://www.nist.gov/traceability/

30. M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag. 21(4), 104–117 (2002). [CrossRef]   [PubMed]  

31. D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE 3765, 67650F, 67650F-10 (2007). [CrossRef]  

32. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 044004 (2005). [CrossRef]   [PubMed]  

33. J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

34. D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE 7906, 79060V, 79060V-9 (2011). [CrossRef]  

35. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological 58, 267–288 (1996).

36. D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE 8229, 82290Z, 82290Z-9 (2012). [CrossRef]  

37. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt. 43(10), 2079–2088 (2004). [CrossRef]   [PubMed]  

38. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116(1), 113–114 (1993). [PubMed]  

39. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993). [CrossRef]   [PubMed]  

40. G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc. 5, 283–291 (1835).

41. M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt. 16(1), 016013 (2011). [CrossRef]   [PubMed]  

42. A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt. 9(2), 347–352 (2004). [CrossRef]   [PubMed]  

43. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003). [CrossRef]   [PubMed]  

44. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004). [CrossRef]   [PubMed]  

45. S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett. 23(11), 879–881 (1998). [CrossRef]   [PubMed]  

46. M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt. 7(2), 236–243 (2002). [CrossRef]   [PubMed]  

47. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt. 36(22), 5647–5654 (1997). [CrossRef]   [PubMed]  

48. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
    [CrossRef] [PubMed]
  2. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
    [CrossRef] [PubMed]
  3. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
    [CrossRef] [PubMed]
  5. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
    [CrossRef] [PubMed]
  6. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
    [CrossRef] [PubMed]
  7. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
    [CrossRef] [PubMed]
  9. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  10. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
    [CrossRef] [PubMed]
  11. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
    [CrossRef] [PubMed]
  12. B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
    [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  14. S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
    [PubMed]
  15. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
    [CrossRef] [PubMed]
  16. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
    [CrossRef] [PubMed]
  17. W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
    [CrossRef] [PubMed]
  18. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
    [CrossRef] [PubMed]
  19. W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
    [CrossRef] [PubMed]
  20. M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
    [CrossRef]
  21. W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
    [PubMed]
  22. M. B. Aldrich, M. V. Marshall, E. M. Sevick-Muraca, G. Lanza, J. Kotyk, J. Culver, L. V. Wang, J. Uddin, B. C. Crews, L. J. Marnett, J. C. Liao, C. Contag, J. M. Crawford, K. Wang, B. Reisdorph, H. Appelman, D. K. Turgeon, C. Meyer, and T. Wang, “Seeing it through: translational validation of new medical imaging modalities,” Biomed. Opt. Express3(4), 764–776 (2012).
    [CrossRef] [PubMed]
  23. US FDA Guidance documents on “General and Cross-Cutting Topics,” http://www.fda.gov/RegulatoryInformation/Guidances/ucm122044.htm
  24. G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
    [CrossRef] [PubMed]
  25. J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
    [CrossRef] [PubMed]
  26. S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
    [CrossRef] [PubMed]
  27. “About NIST Standard Reference Materials®, SRM,” http://www.nist.gov/srm/definitions.cfm
  28. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  29. “Traceability - NIST Policy and Supplementary Materials” http://www.nist.gov/traceability/
  30. M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
    [CrossRef] [PubMed]
  31. D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
    [CrossRef]
  32. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
    [CrossRef] [PubMed]
  33. J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).
  34. D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
    [CrossRef]
  35. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).
  36. D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
    [CrossRef]
  37. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt.43(10), 2079–2088 (2004).
    [CrossRef] [PubMed]
  38. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
    [PubMed]
  39. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  40. G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).
  41. M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
    [CrossRef] [PubMed]
  42. A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
    [CrossRef] [PubMed]
  43. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
    [CrossRef] [PubMed]
  44. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett.29(14), 1650–1652 (2004).
    [CrossRef] [PubMed]
  45. S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett.23(11), 879–881 (1998).
    [CrossRef] [PubMed]
  46. M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
    [CrossRef] [PubMed]
  47. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt.36(22), 5647–5654 (1997).
    [CrossRef] [PubMed]
  48. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]

2012

2011

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

2008

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

2007

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

2006

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

2005

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

2004

2003

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

2002

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

2001

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

2000

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

1998

1997

G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt.36(22), 5647–5654 (1997).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

1996

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

1995

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

1993

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

1990

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

1989

1988

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

1986

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

1979

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

1835

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Airy, G. B.

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Aldrich, M. B.

Allen, D. W.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Appelman, H.

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

Bednov, A.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

Bleeker, E. J. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Boas, D. A.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Brandsema, J. F.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Brown, S. W.

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Cadeddu, J.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Cai, W. B.

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

Cao, Y.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Chang, R.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Chang, R. C.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Chen, X. Y.

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

Cheung, C.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Clarke, M. L.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Cohen, G.

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

Contag, C.

Contag, C. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Crawford, J. M.

Crews, B. C.

Culver, J.

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Dadani, F.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Dale, A. M.

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Dewhirst, M. W.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Donnan, G.

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Donovan, O.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Dunn, A. K.

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Fabiani, M.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Fantini, S.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Franceschini, M. A.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Garner, H. R.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Gratton, E.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Gratton, G.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Griffioen, A. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

Haaland, D. M.

Habets, J. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Hee, M. R.

Hefetz, Y.

Hillman, E. M.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

Huang, D.

Huebschman, M. L.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Hwang, J.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Izatt, J. A.

Jacques, S. L.

S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett.23(11), 879–881 (1998).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

Judy, P. F.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Kim, A.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Koning, G. A.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Kotyk, J.

Lanza, G.

Larsson, M.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Lee, J.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

Lee, J. Y.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Lesoine, J. F.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Liao, J. C.

Lin, C. P.

Litorja, M.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Livingston, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Lohwasser, R.

Madsen, S. J.

Marijnissen, J. P.

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Marnett, L. J.

Marshall, M. V.

Maxwell, S.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Meyer, C.

Mitic, G.

Moeller, B. J.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Moseley, M.

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Mulder, W. J. M.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Muller, P. J.

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Mycek, M. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Nawfel, R. D.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Nicolay, K.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Ntziachristos, V.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

O’Hara, J. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Olsen, J. B.

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Park, Y. D.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Pitts, J. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Puliafito, C. A.

Reisdorph, B.

Rice, J. P.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Ripoll, J.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Ross, B. D.

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

Roy, M.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Sager, E. M.

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Samarov, D.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Schultz, R. A.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Schuman, J. S.

Seltzer, S. E.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

M. B. Aldrich, M. V. Marshall, E. M. Sevick-Muraca, G. Lanza, J. Kotyk, J. Culver, L. V. Wang, J. Uddin, B. C. Crews, L. J. Marnett, J. C. Liao, C. Contag, J. M. Crawford, K. Wang, B. Reisdorph, H. Appelman, D. K. Turgeon, C. Meyer, and T. Wang, “Seeing it through: translational validation of new medical imaging modalities,” Biomed. Opt. Express3(4), 764–776 (2012).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

Sinclair, M. B.

Sloboda, R. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Soelkner, G.

Sorg, B. S.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Springett, R.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Steenbergen, W.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Storm, G.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Strijkers, G. J.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Strömberg, T.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Swanson, E. A.

Swensson, R. G.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Tibshirani, R.

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

Timlin, J. A.

Tokumasu, F.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Turgeon, D. K.

Uddin, J.

Ulyanov, S.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

van der Schaft, D. W. J.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

van Gemert, M. J. C.

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Wang, K.

Wang, L. V.

Wang, T.

Wehner, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Weissleder, R.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Werner-Washburne, M.

Wilmot, C. M.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

Yanch, J. C.

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Yodh, A. G.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Zong, Y. Q.

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Zuzak, K. J.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Am. J. Ophthalmol.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Annu. Rev. Biomed. Eng.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Br. J. Radiol.

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

FASEB J.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

IEEE Eng. Med. Biol. Mag.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Invest. Radiol.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. Comput. Assist. Tomogr.

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

J. Magn. Reson. Imaging

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

J. Nucl. Med.

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

J. R. Stat. Soc. Ser. B Methodological

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Mol. Imaging

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Nat. Med.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Neoplasia

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Opt. Lett.

Philos. Trans. R. Soc. Lond. B Biol. Sci.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol.

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Proc. SPIE

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Psychophysiology

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Stroke

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Surg. Clin. North Am.

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

Trans. Cambridge Philos.l Soc.

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Other

US FDA Guidance documents on “General and Cross-Cutting Topics,” http://www.fda.gov/RegulatoryInformation/Guidances/ucm122044.htm

“Traceability - NIST Policy and Supplementary Materials” http://www.nist.gov/traceability/

“About NIST Standard Reference Materials®, SRM,” http://www.nist.gov/srm/definitions.cfm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Translational research map of medical devices from the basic research state to practical application in clinical settings.

Metrics