H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref]
L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
F. D. Maggio, P. Arumugam, F. R. Delvecchio, S. Batista, and H. M. Kocher, “Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma,” Pancreatology 16(6), 995–1004 (2016).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
U. Baran and R. K. Wang, “Review of optical coherence tomography based angiography in neuroscience,” Neurophotonics 3(1), 010902 (2016).
[Crossref]
F. D. Maggio, P. Arumugam, F. R. Delvecchio, S. Batista, and H. M. Kocher, “Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma,” Pancreatology 16(6), 995–1004 (2016).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
D. Chen, W. Yuan, H.-C. Park, and X. Li, “In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography,” Biomed. Opt. Express 11(8), 4316–4325 (2020).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
H. Kobayashi, A. Furusawa, A. Rosenberg, and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity,” Int. Immunol. 33(1), 7–15 (2021).
[Crossref]
H. Kobayashi and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer,” Acc. Chem. Res. 52(8), 2332–2339 (2019).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
K. Sano, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors,” ACS Nano 7(1), 717–724 (2013).
[Crossref]
M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, and H. Kobayashi, “Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate,” Bioconjugate Chem. 23(3), 604–609 (2012).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
F. D. Maggio, P. Arumugam, F. R. Delvecchio, S. Batista, and H. M. Kocher, “Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma,” Pancreatology 16(6), 995–1004 (2016).
[Crossref]
N. Sudheendran, S. Syed, M. Dickinson, I. Larina, and K. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247–252 (2011).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
H. Kobayashi, A. Furusawa, A. Rosenberg, and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity,” Int. Immunol. 33(1), 7–15 (2021).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
O. A. Grishina, S. Wang, and I. V. Larina, “Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart,” J. Biophotonics 10(5), 735–743 (2017).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
M. Sakuma, S. Kita, and H. Higuchi, “Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye,” Sci. Technol. Adv. Mater. 17(1), 473–482 (2016).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
A. Shahlaee, B. K. Hong, and A. C. Ho, “Optical coherence tomography angiography features of branch retinal vein occlusion,” Retin Cases Brief Rep. 11(1), 90–93 (2017).
[Crossref]
M. Yang, P. Jiang, and R. M. Hoffman, “Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time,” Cancer Res. 67(11), 5195–5200 (2007).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
A. Shahlaee, B. K. Hong, and A. C. Ho, “Optical coherence tomography angiography features of branch retinal vein occlusion,” Retin Cases Brief Rep. 11(1), 90–93 (2017).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
K. Kawamura, Y. Tanaka, H. Nakasone, Y. Ishihara, and Y. Kanda, “Development of a unique T cell receptor gene-transferred tax-redirected T cell immunotherapy for adult T cell leukemia,” Biol. Blood Marrow Transplant. 26(8), 1377–1385 (2020).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
M. Yang, P. Jiang, and R. M. Hoffman, “Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time,” Cancer Res. 67(11), 5195–5200 (2007).
[Crossref]
K. Yamauchi, M. Yang, and P. Jiang, “Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration,” Cancer Res. 65(10), 4246–4252 (2005).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
K. Kawamura, Y. Tanaka, H. Nakasone, Y. Ishihara, and Y. Kanda, “Development of a unique T cell receptor gene-transferred tax-redirected T cell immunotherapy for adult T cell leukemia,” Biol. Blood Marrow Transplant. 26(8), 1377–1385 (2020).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
K. Kawamura, Y. Tanaka, H. Nakasone, Y. Ishihara, and Y. Kanda, “Development of a unique T cell receptor gene-transferred tax-redirected T cell immunotherapy for adult T cell leukemia,” Biol. Blood Marrow Transplant. 26(8), 1377–1385 (2020).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
M. Sakuma, S. Kita, and H. Higuchi, “Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye,” Sci. Technol. Adv. Mater. 17(1), 473–482 (2016).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
H. Kobayashi, A. Furusawa, A. Rosenberg, and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity,” Int. Immunol. 33(1), 7–15 (2021).
[Crossref]
H. Kobayashi and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer,” Acc. Chem. Res. 52(8), 2332–2339 (2019).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
K. Sano, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors,” ACS Nano 7(1), 717–724 (2013).
[Crossref]
M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, and H. Kobayashi, “Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate,” Bioconjugate Chem. 23(3), 604–609 (2012).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
F. D. Maggio, P. Arumugam, F. R. Delvecchio, S. Batista, and H. M. Kocher, “Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma,” Pancreatology 16(6), 995–1004 (2016).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
N. Sudheendran, S. Syed, M. Dickinson, I. Larina, and K. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247–252 (2011).
[Crossref]
N. Sudheendran, S. Syed, M. Dickinson, I. Larina, and K. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247–252 (2011).
[Crossref]
O. A. Grishina, S. Wang, and I. V. Larina, “Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart,” J. Biophotonics 10(5), 735–743 (2017).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
G. Liu, D. Xu, and F. Wang, “New insights into diabetic retinopathy by OCT angiography,” Diabetes Res. Clin. Pract. 142, 243–253 (2018).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
F. D. Maggio, P. Arumugam, F. R. Delvecchio, S. Batista, and H. M. Kocher, “Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma,” Pancreatology 16(6), 995–1004 (2016).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
O. Markowitz, M. Schwartz, S. Minhas, and D. M. Siegel, “Speckle-variance optical coherence tomography: a novel approach to skin cancer characterization using vascular patterns,” Dermatology online journal 22(2016).
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
A. Nimgaonkar, O. Segurado, W.-S. Tsai, S.-T. Pang, and R. Mei, “A novel circulating tumor cell blood test for early detection of colorectal, prostate, and breast cancers: Results from 709 samples,” J. Clin. Oncol. 36(15_suppl), e13549 (2018).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
O. Markowitz, M. Schwartz, S. Minhas, and D. M. Siegel, “Speckle-variance optical coherence tomography: a novel approach to skin cancer characterization using vascular patterns,” Dermatology online journal 22(2016).
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, and H. Kobayashi, “Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate,” Bioconjugate Chem. 23(3), 604–609 (2012).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
K. Sano, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors,” ACS Nano 7(1), 717–724 (2013).
[Crossref]
M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, and H. Kobayashi, “Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate,” Bioconjugate Chem. 23(3), 604–609 (2012).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
K. Kawamura, Y. Tanaka, H. Nakasone, Y. Ishihara, and Y. Kanda, “Development of a unique T cell receptor gene-transferred tax-redirected T cell immunotherapy for adult T cell leukemia,” Biol. Blood Marrow Transplant. 26(8), 1377–1385 (2020).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
P. Nelis, I. Kleffner, M. C. Burg, C. R. Clemens, M. Alnawaiseh, J. Motte, M. Marziniak, N. Eter, and F. Alten, “OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients,” Sci. Rep. 8(1), 8148 (2018).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
A. Nimgaonkar, O. Segurado, W.-S. Tsai, S.-T. Pang, and R. Mei, “A novel circulating tumor cell blood test for early detection of colorectal, prostate, and breast cancers: Results from 709 samples,” J. Clin. Oncol. 36(15_suppl), e13549 (2018).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
A. Nimgaonkar, O. Segurado, W.-S. Tsai, S.-T. Pang, and R. Mei, “A novel circulating tumor cell blood test for early detection of colorectal, prostate, and breast cancers: Results from 709 samples,” J. Clin. Oncol. 36(15_suppl), e13549 (2018).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
H. Kobayashi, A. Furusawa, A. Rosenberg, and P. L. Choyke, “Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity,” Int. Immunol. 33(1), 7–15 (2021).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
M. Mitsunaga, M. Ogawa, N. Kosaka, L. T. Rosenblum, P. L. Choyke, and H. Kobayashi, “Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules,” Nat. Med. 17(12), 1685–1691 (2011).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
M. Sakuma, S. Kita, and H. Higuchi, “Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye,” Sci. Technol. Adv. Mater. 17(1), 473–482 (2016).
[Crossref]
K. Sano, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors,” ACS Nano 7(1), 717–724 (2013).
[Crossref]
M. Mitsunaga, T. Nakajima, K. Sano, P. L. Choyke, and H. Kobayashi, “Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate,” Bioconjugate Chem. 23(3), 604–609 (2012).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Y. Maruoka, T. Nagaya, Y. Nakamura, K. Sato, F. Ogata, S. Okuyama, P. L. Choyke, and H. Kobayashi, “Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase–luciferin photon-counting and fluorescence imaging,” Mol. Pharmaceutics 14(12), 4628–4635 (2017).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P. L. Choyke, and H. Kobayashi, “Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT),” J. Controlled Release 232, 1–8 (2016).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
T. Nagaya, K. Sato, T. Harada, Y. Nakamura, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen,” PLoS One 10(8), e0136829 (2015).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
O. Markowitz, M. Schwartz, S. Minhas, and D. M. Siegel, “Speckle-variance optical coherence tomography: a novel approach to skin cancer characterization using vascular patterns,” Dermatology online journal 22(2016).
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
A. Nimgaonkar, O. Segurado, W.-S. Tsai, S.-T. Pang, and R. Mei, “A novel circulating tumor cell blood test for early detection of colorectal, prostate, and breast cancers: Results from 709 samples,” J. Clin. Oncol. 36(15_suppl), e13549 (2018).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
A. Shahlaee, B. K. Hong, and A. C. Ho, “Optical coherence tomography angiography features of branch retinal vein occlusion,” Retin Cases Brief Rep. 11(1), 90–93 (2017).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
O. Markowitz, M. Schwartz, S. Minhas, and D. M. Siegel, “Speckle-variance optical coherence tomography: a novel approach to skin cancer characterization using vascular patterns,” Dermatology online journal 22(2016).
S. Caujolle, R. Cernat, G. Silvestri, M. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
Ihler Friedrich, Bertlich Mattis, Weiss Bernhard, Dietzel Steffen, Martin, and Canis, “Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo,” BioMed Res. Int. 2015, 1–8 (2015).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref]
N. Sudheendran, S. Syed, M. Dickinson, I. Larina, and K. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247–252 (2011).
[Crossref]
R. Schwartz, H. Khalid, S. Sivaprasad, L. Nicholson, E. Anikina, P. Sullivan, P. J. Patel, K. Balaskas, and P. A. Keane, “Objective evaluation of proliferative diabetic retinopathy using OCT,” Ophthalmol. Retina 4(2), 164–174 (2020).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
N. Sudheendran, S. Syed, M. Dickinson, I. Larina, and K. Larin, “Speckle variance OCT imaging of the vasculature in live mammalian embryos,” Laser Phys. Lett. 8(3), 247–252 (2011).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
M. Makoto, N. Takahito, S. Kohei, K. M. Gabriela, P. L. Choyke, and K. Hisataka, “Immediatein vivotarget-specific cancer cell death after near infrared photoimmunotherapy,” BMC Cancer 12(1), 345 (2012).
[Crossref]
L. Liu, Y. Jia, H. L. Takusagawa, A. D. Pechauer, B. Edmunds, L. Lombardi, E. Davis, J. C. Morrison, and D. Huang, “Optical coherence tomography angiography of the peripapillary retina in glaucoma,” JAMA Ophthalmol. 133(9), 1045–1052 (2015).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
K. Kawamura, Y. Tanaka, H. Nakasone, Y. Ishihara, and Y. Kanda, “Development of a unique T cell receptor gene-transferred tax-redirected T cell immunotherapy for adult T cell leukemia,” Biol. Blood Marrow Transplant. 26(8), 1377–1385 (2020).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, H. Horng, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo,” J. Controlled Release 279, 171–180 (2018).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
Q. Tang, T. Nagaya, Y. Liu, J. Lin, K. Sato, H. Kobayashi, and Y. Chen, “Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo,” J. Controlled Release 260, 154–163 (2017).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]
A. Nimgaonkar, O. Segurado, W.-S. Tsai, S.-T. Pang, and R. Mei, “A novel circulating tumor cell blood test for early detection of colorectal, prostate, and breast cancers: Results from 709 samples,” J. Clin. Oncol. 36(15_suppl), e13549 (2018).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref]
G. Liu, D. Xu, and F. Wang, “New insights into diabetic retinopathy by OCT angiography,” Diabetes Res. Clin. Pract. 142, 243–253 (2018).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
H. Guo, H.-W. Wang, Q. Tang, E. Anderson, R. Falola, T. Smith, Y. Liu, M. Levi, P. M. Andrews, and Y. Chen, “Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography,” J. Innovative Opt. Health Sci. 11(05), 1850030 (2018).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]
U. Baran and R. K. Wang, “Review of optical coherence tomography based angiography in neuroscience,” Neurophotonics 3(1), 010902 (2016).
[Crossref]
A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref]
L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref]
P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]
O. A. Grishina, S. Wang, and I. V. Larina, “Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart,” J. Biophotonics 10(5), 735–743 (2017).
[Crossref]
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]
H.-C. Lee, O. O. Ahsen, K. Liang, Z. Wang, M. Figueiredo, M. G. Giacomelli, B. Potsaid, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video),” Gastrointest. Endosc. 86(3), 476–484.e3 (2017).
[Crossref]
K. Sato, H. Hanaoka, R. Watanabe, T. Nakajima, P. L. Choyke, and H. Kobayashi, “Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer,” Mol. Cancer Ther. 14(1), 141–150 (2015).
[Crossref]
C.-P. Liang, T. Nakajima, R. Watanabe, K. Sato, P. L. Choyke, Y. Chen, and H. Kobayashi, “Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography,” J. Biomed. Opt. 19(9), 098004 (2014).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref]
M. Ulrich, L. Themstrup, N. de Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, and G. B. Jemec, “Dynamic optical coherence tomography in dermatology,” Dermatology 232(3), 298–311 (2016).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy,” Retina 35(11), 2371–2376 (2015).
[Crossref]
L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref]
T. E. de Carlo, M. A. Bonini Filho, C. R. Baumal, E. Reichel, A. Rogers, A. J. Witkin, J. S. Duker, and N. K. Waheed, “Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography,” Ophthalmic Surg. Lasers Imaging 47(2), 115–119 (2016).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
S. Wu, H. Guo, H. Horng, Y. Liu, H. Li, P. Daneshpajouhnejad, A. Rosenberg, C. Albanese, S. Ranjit, P. M. Andrews, M. Levi, Q. Tang, and Y. Chen, “Morphological and functional characteristics of aging kidneys based on two-photon microscopy in vivo,” J. Biophotonics 13, e201900246 (2020).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
G. Liu, D. Xu, and F. Wang, “New insights into diabetic retinopathy by OCT angiography,” Diabetes Res. Clin. Pract. 142, 243–253 (2018).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
K. Yamauchi, M. Yang, and P. Jiang, “Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration,” Cancer Res. 65(10), 4246–4252 (2005).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
M. Yang, P. Jiang, and R. M. Hoffman, “Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time,” Cancer Res. 67(11), 5195–5200 (2007).
[Crossref]
K. Yamauchi, M. Yang, and P. Jiang, “Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration,” Cancer Res. 65(10), 4246–4252 (2005).
[Crossref]
K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]
D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3(5), 911–919 (2012).
[Crossref]
M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref]
A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
C. Joo Hee, M. Woo Kyung, C. Nariya, C. S. Yang, P. Seong Ho, P. Jeong Mi, H. Boo Kyung, C. Yeon Hyun, C. Gyunggoo, and I. Jung-Gi, “Differentiation of benign from malignant solid breast masses: conventional US versus spatial compound imaging,” Radiology 237(3), 841–846 (2005).
[Crossref]
L. Lin, W. Kai, S. Xilin, W. Kezheng, S. Yingying, Z. Guangfeng, and S. Baozhong, “Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer,” Med. Sci. Monit. 21, 376–382 (2015).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, H. Yokota, A. Takahashi, T. Omae, Y.-S. Song, T. Takahashi, and A. Yoshida, “Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(14), 6247–6255 (2016).
[Crossref]
A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” Am. J. Ophthalmol. 160(1), 35–44.e1 (2015).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
T. Akagi, Y. Iida, H. Nakanishi, N. Terada, S. Morooka, H. Yamada, T. Hasegawa, S. Yokota, M. Yoshikawa, and N. Yoshimura, “Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study,” Am. J. Ophthalmol. 168, 237–249 (2016).
[Crossref]
J. Xu, S. Han, C. Balaratnasingam, Z. Mammo, K. S. Wong, S. Lee, M. Cua, M. Young, A. Kirker, and D. Albiani, “Retinal angiography with real-time speckle variance optical coherence tomography,” Br. J. Ophthalmol. 99(10), 1315–1319 (2015).
[Crossref]
Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[Crossref]
L. M. Wurster, R. N. Shah, F. Placzek, S. Kretschmer, M. Niederleithner, L. Ginner, J. Ensher, M. P. Minneman, E. E. Hoover, H. Zappe, W. Drexler, R. A. Leitgeb, and Ç. Ataman, “Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe,” J. Biophotonics 12(4), e201800382 (2019).
[Crossref]
R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Visual Sci. 57(9), OCT51–OCT68 (2016).
[Crossref]
D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref]
A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref]
Q. Zhang, K. A. Rezaei, S. S. Saraf, Z. Chu, F. Wang, and R. K. Wang, “Ultra-wide optical coherence tomography angiography in diabetic retinopathy,” Quant. Imaging Med. Surg. 8(8), 743–753 (2018).
[Crossref]
A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[Crossref]
Y. Huang, Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, U. Sharma, G. Gregori, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 382–389 (2014).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]
K. B. Schaal, M. R. Munk, I. Wyssmueller, L. E. Berger, M. S. Zinkernagel, and S. Wolf, “Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging,” Retina 39(1), 79–87 (2019).
[Crossref]
J. Pan, D. Chen, X. Yang, R. Zou, K. Zhao, D. Cheng, S. Huang, T. Zhou, Y. Yang, and F. Chen, “Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography,” Am. J. Ophthalmol. 192, 146–156 (2018).
[Crossref]