A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]
M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]
T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]
M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]
C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]
S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016).
[Crossref]
G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013).
[Crossref]
K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]
P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]
K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]
Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]
X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]
T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]
P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]
X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]
T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]
M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]
Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]
Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).
Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).
M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]
M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]
M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]
F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]
T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]
T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016).
[Crossref]
K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]
P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]
F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]
M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]
C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]
D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]
T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]
T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]
X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]
Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]
K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]
T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]
M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]
M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]
M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]
G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]
Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).
Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]
T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]
W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]
N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]
K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]
X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]
M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]
X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]
T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]
M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]
M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]
T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]
T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]
T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]
X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]
T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]
T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]
M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).
A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]
K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]
A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]
T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]
B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]
C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]
S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]
A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]
T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]