Abstract

Differential artery-vein (AV) analysis is essential for retinal study, disease detection, and treatment assessment. This study is to characterize vascular reflectance profiles and blood flow patterns of retinal artery and vein systems in optical coherence tomography (OCT) and OCT angiography (OCTA), and establish them as robust signatures for objective AV classification. A custom designed OCT was employed for three-dimensional (3D) imaging of mouse retina, and corresponding OCTA was reconstructed. Radially resliced OCT B-scans revealed two, i.e. top and bottom, hyperreflective wall boundaries in retinal arteries, while these wall boundaries were absent in OCT of retinal veins. Additional OCTA analysis consistently displayed a layered speckle distribution in the vein, which may indicate the venous laminar flow. These OCT and OCTA differences offer unique signatures for objective AV classification in OCT and OCTA.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As a functional extension of optical coherence tomography (OCT), OCT angiography (OCTA) allows noninvasive label-free imaging of retinal vasculature at the capillary level resolution [1,2]. Because vascular changes are often involved in the symptoms of various retinal diseases, such as glaucoma [3], diabetic retinopathy (DR) [4], age-related macular degeneration (AMD) [5], and retinitis pigmentosa (RP) [6], the analysis of retinal vasculature in OCTA has been widely implemented in clinics and preclinical research for the detection of early pathologies and the development of treatment strategies. However, a vessel map of OCTA is inherently limited to provide information on the vessel types. Artery-vein (AV) classification is of high interest since abnormal features on specific vessel types can be valuable inputs for detecting systemic and retinal diseases [7,8]. Kromer et al. showed altered retinal veins in Parkinson's disease patients [9]. Abdelhak et al. found that the wall-to-lumen ratio of the retinal artery was correlated with the volume of white matter hyperintensities, microglial activation, and neuroaxonal damage in cerebral small vessel disease [10]. Reagan et al. reported that aging caused a significant reduction of vascular smooth muscle cells (SMCs) in focal patches along retinal arterioles [11]. In addition, venous beading has been shown in patients with hypertension and diabetes. AV caliber ratio has been also demonstrated as a predictor of retinal diseases [12].

To achieve AV classification in OCTA in clinical practice, color fundus image–guided method has been reported [13]. However, using two separate imaging modalities is a less effective strategy. Thus, recent approaches have been made to leverage features solely acquired from OCT and OCTA. Alam et al. demonstrated OCT intensity feature based analysis to guide AV classification in OCTA. A blood vessel tracking algorithm was employed to automatically generate the AV vessel maps [14]. Furthermore, Alam et al. have recently established a fully convolutional network AV-Net for AV classification in OCTA [15]. Xu et al. introduced a method that can differentiate retinal veins from arteries in OCTA by identifying venous origin in the deep capillary plexus (DCP) [16]. Son et al. demonstrated the feasibility of using near infrared OCT oximetry to guide AV classification in OCTA [17].

OCTA has been also widely used in preclinical animal research [1823]. Transgenic mice are commonly used for the study of retinal vascular pathology and development of treatment protocols of eye diseases. OCTA analysis of mouse models exhibiting vascular abnormalities on a specific vessel type, such as retinal artery and vein occlusion [24,25], hyperglycemia [26,27], neovascular disease [28], and neurodegenerative disease [29,30], would benefit from AV classification; however, characterization of arteries and veins in OCTA has not been well explored. Methodologically there are relatively more options available in animal study to differentiate the vessel types in OCTA. Fluorescein angiography (FA) is a standard method for classifying retinal arteries and veins [31]. However, it is rarely employed just for the purpose of AV classification due to an invasive nature. FA also requires the selection of adjacent arteries and veins for measurement to avoid misclassification [31]. Another gold standard is ex vivo fluorescent histochemical analysis [11]. However, this method does not allow long-term observation of the same animal at different time points and has limited capabilities to study retinal physiology and function. Functional OCT can be also utilized to guide AV classification in OCTA. Visible OCT oximetry enables accurate identification of the vessel type by quantifying oxygen level [32]. However, photoreceptor bleaching is unavoidable, limiting its usage to light-induced functional examinations [33]. Also, standard OCT is mostly built on near infrared light. Doppler OCT has been used to measure and compare the blood flow velocities in AV systems [34,35]. However, this technique requires extra scanning protocols with high sampling density to extract velocity components. Thus, it is inconvenient to be readily used for AV classification in typical OCTA. In some instances, descriptive features on en face OCT images can aid AV classification. For example, the retinal arteries are generally smaller than the veins, and the arteries have more branch points than the veins in the superficial vascular plexus (SVP) [36,37]. However, these descriptive features become complicated when the two vessel types reveal similar structures or patterns depending on retinal regions. In addition, there are always variations in the vessel distribution and arrangement in both the human and mouse retina [38]. Mutant mice often exhibited altered patterning of retinal vessels relative to wild-type mice [39]. Therefore, none of the descriptive features can be used as a global standard.

In this article, we demonstrate the feasibility of using radially resliced OCT for AV classification in OCTA of mouse retinas. Near infrared OCT and OCTA volumes, originally acquired by a standard raster scan, were resliced in polar coordinates, centered at the optic nerve head (ONH). This method allows the pseudo scanning lines to be aligned as much as parallel to the main vessels radially emanating from the ONH, disclosing continuous cross-sectional images of arteries and veins. Our approach provides decisive information for AV classification, i.e., different vessel wall boundary signals and intensity distributions inside the lumen. In addition, we found a unique pattern of laminar flow in the vein on radial OCTA B-scans.

2. Methods

2.1 Experimental setup

A custom-built OCT system was used in this study. The system has been used in our previous functional OCT and OCTA studies [4042]. Briefly, a broadband near-infrared superluminescent diode (λ = 810 nm and Δλ = 100 nm; D-810-HP, Superlum, Carrigtwohill, County Cork, Ireland) was used as the OCT light source with 1 mW power illuminated on the mouse cornea. A linear CCD camera with 2048 pixels (AViiVA EM4; e2v Technologies, Chelmsford, UK) was used for recording OCT spectra in the custom-built OCT spectrometer. The frame speed of the camera was set to a 50-kHz A-scan rate. The axial and lateral resolutions were estimated as 3 and 11 μm, respectively.

2.2 Experimental procedure

B6SJLF1/J and C57BL/6J (The Jackson Laboratory, Bar Harbor, ME) mice were used in this study. For the imaging, the mouse was first anesthetized by a mixture of 100 mg/kg ketamine and 5 mg/kg xylazine. A drop of 1% tropicamide ophthalmic solution (Akorn, Lake Forest, IL) was applied to the imaging eye, and a cover glass (12-545-80; Microscope cover glass, Fisherbrand, Waltham, MA) with a drop of lubricant eye gel (Severe; GenTeal, Novartis, Basel, Switzerland) was placed. Once the mouse was fully anesthetized, the head was fixed by using a bite bar and ear bars. All animal care and experiments adhered to the Association for Research in Vision and Ophthalmology statement for the use of animals in ophthalmic and vision research. All experiments were performed following the protocols approved by the Animal Care Committee at the University of Illinois at Chicago.

2.3 Data acquisition and radial B-scan preparation

Volumetric raster scans were acquired over 1.2 × 1.2 mm retinal region. Each volume consisted of 500 A-lines for each B-scan, and four repeated B-scans at each slow scan position were collected. Thus, 4 × 500 × 500 A-scans were acquired for each OCT and OCTA volume. Speckle variance processing was used for OCTA volume reconstruction [43], and the repeated 4 B-scans were averaged for OCT volume construction. OCT and OCTA volumes were then resliced on the polar coordinate system (Fig. 1(A)). The center of the circle was specified at the ONH with radius 300 pixels, and the step angle was 1 degree to sweep the OCT and OCTA volumes, creating 359 radial B-scans. To achieve better contrast, each frame was averaged with adjacent 2 frames.

 

Fig. 1. Representative en face OCT (A) and OCTA (B) volumes acquired by a raster scan protocol. To reconstruct radial B-scans, the center of circle with radius r and step angle θ was specified at the ONH in polar coordinates. Radial OCT B-scans of an artery (C1), a vein (C2), and an avascular region (C3), and radial OCTA B-scans of an artery (D1), a vein (D2), and an avascular region (D3). White arrows in inset figures (C1 and C2) indicate the boundaries between the vessel and surrounding tissues. ONH: optic nerve head; IPL: inner plexiform layer. Scale bars: 100 μm.

Download Full Size | PPT Slide | PDF

In addition, double circular scanning around the ONH with radii of 0.5 mm and 0.7 mm was implemented for Doppler OCT (DOCT). Each circular scan had 1500 A-lines. The phase differences of adjacent A-lines were calculated to draw the Doppler frequency shift, and the Doppler angle was calculated by relative position of each blood vessel in the two circular scans. The blood flow velocity was then calculated from the Doppler shift and Doppler angle [4446]. When the peak flow had opposite direction at the center of the vessel compared to the edge of the vessel, phase unwrapping was applied to correct flow measurement. Total 10 DOCT images were averaged to mitigate phase noise.

2.4 Data analysis

In OCT and OCTA volumes, each major vessel consisted of several consecutive radial B-scans, thus the B-scans belonging to the same vessel were merged by maximum intensity projection, returning a single vessel image. The vessel area was then manually segmented and flattened by using the “Straighten” function in Fiji software. A-lines in each vessel image were then averaged in lateral direction, resulting in a line intensity profile per vessel, followed by profile length rescaling and intensity normalization. We first cropped the vessel region in the line intensity profile including extra 5 pixels above (vitreous side) and below (inner retinal side) the vessel wall boundaries, and each cropped intensity profile was then rescaled into 30 pixels using bilinear interpolation for comparison of intensity profiles between the vessels; thus, the vessel region, smaller or larger than 30 pixels, were upsampled or downsampled, respectively. 30 pixels were chosen considering the average pixel number along the vessel width and 10 extra pixels near the vascular boundaries. The intensity normalization was then performed by dividing the intensity of all pixels by the maximum pixel intensity. The normalization was independently processed in each line intensity profile. This process was applied to all major vessel branches (Fig. 2(C1) and (2D1)). Based on all the normalized vascular intensity profiles, an averaged intensity profile was further constructed and compared between arteries and veins via the two-sample Kolmogorov-Smirnov (K-S) test. The vessel width was manually measured on the flattened OCT images. Since mouse retinal vessels are exposed at the retinal surface, the posterior border of the vitreous was chosen as the upper boundary of the vessels, and the bottom lines of hyperreflective vessel wall and hyperreflective zone were chosen as the lower boundary of arteries and veins, respectively, in the width measurement (inset figures in Fig. 1(C1) and (1C2)). The two-sample Welch’s t-test was performed for the comparison between arteries and veins. P-value < 0.05 was considered statistically significant. Image reconstruction and processing were done by MATLAB R2016a (MathWorks, Natick, MA), and statistical analysis was done by Origin 2020b (OriginLab, Northampton, MA).

 

Fig. 2. Representative radial OCT B-scan images of 3 arteries and 3 veins. Arteries reveal hyperreflective boundaries along the vessel walls (yellow arrows), while veins lacking boundary signals show a hyperreflective zone at the bottom half of the vessel (blue arrow). Normalized intensity maps constructed from 39 arteries (C1) and 35 veins (D1). Each column represents single vessel information. Corresponding average intensity plots of artery (C2) and vein (D2). Solid curves represent the average values, and the shaded areas represent the standard deviations. Data were collected from 7 different mice. All images were processed and normalized on a linear scale. (E) En face OCT image of a mouse retina used in DOCT processing. Arteries and veins were independently classified by the radial OCT B-scans (F) and Doppler angle (G). Circular scanned OCT image (G1) and circular scanned DOCT image (G2) with blood flow velocity information. Red color indicates the artery, and blue color indicates the vein. ONH: optic nerve head. Scale bars: 200 μm.

Download Full Size | PPT Slide | PDF

3. Results

3.1 Radially sliced OCT and OCTA of retinal blood vessels

Volumetric raster scans were first obtained in the mouse retina. Figure 1(A) and 1(B) show the original en face OCT and OCTA volumes, respectively, and the corresponding B-scan fly-through movies were provided as Visualization 1. The radial slicing was performed through the entire volume with 1-degree step angle (Fig. 1(A)), creating a new set of B-scans parallel to the vessels. Since the first branches of the mouse retinal vessels radially emanate from the ONH, the radial B-scans can visualize continuous cross-sectional vessel images. While the OCT reveals reflectance intensity correlated with vascular morphology; the OCTA reflects reflectance variance due to blood flow activity. In other words, the OCT can be used for imaging vascular morphology, and OCTA can be used for mapping blood flow activity. In radial OCT B-scans, arteries surrounded by a thick layer of SMCs exhibited hyperreflective boundaries along the vessel wall (Fig. 1(C1)), lacking in veins surrounded by a thin membrane (Fig. 1(C2)). In addition, in both OCT and OCTA B-scans, arterial lumens showed a homogeneous intensity distribution (Fig. 1(C1) and (1D1)), while a layered intensity distribution was observed in the venous lumens (Fig. 1(C2) and (1D2)), which may indicate different blood flow signatures in arteries and veins. Using these vascular morphology and blood flow signatures in OCT and OCTA, AV classification was manually performed in the following sections.

3.2 Comparative analysis of reflectance profiles in retinal arteries and veins

Representative radial OCT B-scans in Fig. 2(A) and 2(B) illustrate the different reflectance profiles between artery and vein. To quantitatively analyze the OCT reflectance profiles across the vessel, normalized vascular intensity maps were constructed from all the first-branch vessels in 7 different B6SJLF1/J mice (Fig. 2(C1) and (2D1)). Figure 2(C2) and (2D2) show the average normalized intensity profiles from the intensity maps of arteries and veins, respectively. Two local maxima were observed in the arterial profile while the intensity profiles in veins were skewed towards the bottom half of the lumen. Difference of the two distributions was also confirmed by the two-sample K-S test (P = .035). In order to further verify the reflectance profile-based classification, we implemented dual-scan DOCT for comparative validation. Figure 2(E) shows en face OCT image of a mouse retina with 12 main vessel branches. TK classified the artery and vein based on the reflectance profiles of the radial OCT B-scans (Fig. 2(F)), and TS classified the artery and vein based on DOCT measurement independently. The identification of vessel types in DOCT was based on the calculated Doppler angle and Doppler frequency shift. Red color represents positive Doppler shift in arteries, i.e., blood flow moving away from the ONH, and blue color represent negative Doppler shift in veins, i.e., blood flow moving toward the ONH (Fig. 2(G2)). We found that these two classification results were entirely consistent (Fig. 2(E-G)), demonstrating a high reliability of AV classification by referring to the vascular morphology and blood flow signatures.

3.3 AV classification and characterization

We next checked the strain dependence of the reflectance profiles in two different mouse strains (B6SJLF1/J and C57BL/6J). These are popular mouse models widely used in ocular research. Figure 3(A) and 3(B) show representative en face OCT images and vascular images acquired by the pseudo radial scans, and radial B-scan fly-through movies were also provided as Visualization 2. We confirmed that both strains unambiguously revealed the two types of reflectance profiles demonstrated in Fig. 2(A)–2(D). We next characterized the retinal vessels after AV classification. Figure 3(C) shows original en face OCTA images obtained from 4 different mice, and Fig. 3(D) shows corresponding AV classified images. Generally, for the 1st order branching, i.e. originating from the ONH, an alternating pattern between arteries and veins is observed; examples of this pattern are shown in Fig. 3(D). It is also known that 5–6 arteries and 5–6 veins are typically present in the mouse retina [47], and we confirmed that number of arteries and veins were comparable (B6SJLF1/J: 5.57 ± 0.53 for artery and 5 ± 0.82 for vein (P = .15); C57BL/6J: 5.86 ± 0.38 for artery and 5.57 ± 0.53 for vein, P = .27). Since the radial slicing method can be implemented in any OCT volumes containing the major vessel branch regardless of the imaging area, we successfully classified the first branches of arteries and veins in OCTA of peripheral retinal areas (Fig. 3(E)) and confirmed that arteries branched into precapillary arterioles and distributed predominantly within the SVP. The radial B-scans also showed relative axial positions of arteries and veins. Arteries with outgoing flows were located above the major veins with incoming flows (Fig. 3(F)). Based on the cross-sectional vessel images, retinal vessel width was also measured (Fig. 3(G)), and we found that the venous size exhibited higher variations compared to the arterial size (F-test, P = .0014). The thickest vessel in each mouse retina was vein, while arteries show relatively consistent sizes. The mean vessel width was comparable between arteries and veins in B6SJLF1/J (27.42 ± 3.10 µm for artery and 27.96 ± 5.33 µm for vein; P = .60) as well as C57BL/6J (26.43 ± 3.09 µm for artery and 27.12 ± 5.52 µm for vein; P = .49).

 

Fig. 3. En face OCT images and corresponding vascular images of a B6SJLF1/J mouse (A) and a C57BL/6J (B). Red color for arteries and blue color for veins. Original en face OCTA images (C) and the same en face images with pseudo-colors (red for arteries and blue for veins) after AV classification (D). (E) AV classifications on peripheral retinal OCTA on different cardinal axes: Nasal (E1), dorsal (E2), ventral (E3), and temporal (E4) area. (F) Relative axial positions of artery (F1) and vein (F2) based on the ONH. (G) Box-scatter plot of vessel width measurement from seven B6SJLF1/J mice (N = 39 for arteries and N = 35 for veins) and seven C57BL/6J mice (N = 41 for arteries and N = 39 for veins). Scale bars: 200 μm.

Download Full Size | PPT Slide | PDF

3.4 Blood flow patterns in retinal arteries and veins

A serendipitous observation in this study was the layered intensity distribution in the venous lumen (Fig. 2(B)). To better understand these intensity patterns, radial OCTA B-scans were reconstructed and overlaid on the OCT B-scans (Fig. 4(A) and 4(B)). Intriguingly the hyperreflective bottom half of veins on OCT was exactly matched with high speckle variations, presumably caused by moving blood cells in OCTA (Fig. 4(B3)), which may indicate a unique laminar flow in retinal veins. Likewise, the intensity pattern of the arteries in OCT were well matched with the arterial OCTA images that present homogeneous intensity distribution (Fig. 4(A3)). Real-time OCT and OCTA recordings (Visualization 3) further confirmed the unique speckle patterns inside the lumens of arteries and veins. Figure 4(C) shows 1000 frames averaged OCTA images, clearly displaying the difference between arteries and veins.

 

Fig. 4. Different blood flow patterns between artery (A) and vein (B). Artery in OCT (A1) and OCTA (A2) and composite of OCT and OCTA (A3). Highlighted red color indicates OCTA information. Vein in OCT (B1) and OCTA (B2) and composite of OCT and OCTA (B3). Highlighted blue color indicates OCTA information. (C) Averaged OCTA B-scan containing both artery and vein. The artery reveals an alternating hyperreflective and hyporeflective zones (green dotted box). The vein displays a hyporeflective zone (blue arrow) and a hyperreflective zone (white arrow). Scale bars: 200 μm.

Download Full Size | PPT Slide | PDF

4. Discussion

In this study, we implemented the pseudo radial scanning in OCT volumes to characterize reflectance profiles of arteries and veins for AV classification. Radial OCT B-scans showed 1) two hyperreflective boundary signals along the vessel wall of arteries and 2) different intensity distributions in the vessel lumen between arteries and veins. These reflectance profiles provided decisive information for AV classification, enabling the differentiation in OCTA at various retinal regions. Moreover, the radial OCTA displayed discernible laminar flow patterns in arteries and veins.

We speculate that the hyperreflective boundary signals in arteries result from the arterial wall morphology. The blood vessel wall can be divided in three layers: the tunica intima, the tunica media, and the tunica adventitia. Retinal arteries have a well-developed tunica media, formed by a few layers of SMCs [48], and the number of SMCs gradually decreases when arteries branch in precapillary arterioles (Fig. 5). In contrast, the venous wall is very thin, consisting of a single layer of endothelial cells and only a few SMCs (Fig. 5) [49]. Zhu et al. reported that the retinal arteriole had a significantly thicker vessel wall compared with the retinal venule [50], and Chui et al. demonstrated that the venular wall was relatively thinner compared to the arterioles due to their different structure [51]. Motte et al. further demonstrated by OCT that the arterial walls generally have higher reflectivity compared with the venous walls [37]. Unlike previous studies examining vascular features through transverse scanning by either circular or raster B-scans [9,10,37,50,5254], the proposed radial sectioning along the vessel can reveal a continuous longitudinal vasculature, offering a better opportunity to classify AV as well as to analyze the vascular morphology and pathologies.

 

Fig. 5. (A) Illustration of the retinal vascular tree of the rat. (B) Light micrographs of first-order arterioles (1°), second-order arteriole (2°), capillary, and venule. Scale bars represent 10 µm. This is adapted from Curtis, T. M., McLaughlin, D., O'Hare, M., Kur, J., Barabas, P., Revolta, G., Scholfield, C. N., McGeown, J. G., McGahon, M. K. Isolation of Retinal Arterioles for Ex Vivo Cell Physiology Studies. J. Vis. Exp. (137), e57944, doi:10.3791/57944 (2018) [55].

Download Full Size | PPT Slide | PDF

In addition, the radial OCTA B-scans showed different blood flow patterns between arteries and veins. Especially, the veins revealed a distinct hyperreflective zone at the bottom half of the lumen in which moving blood cells might be predominant, observed by a sequence of OCTA images (Visualization 3). This hyperreflective zone can be explained by venous laminar flow [56]. The retinal veins drain blood from the DCP; thus, erythrocytes move upward to the SVP. Due to laminar flow characteristics limiting lateral and axial mixing, most erythrocytes would follow the basal bloodstream in the lumen. Willerslev et al. also suggested different laminar flow profiles of arteries and veins in OCT [57]. Liang et al. observed the retinal venous laminar flow at the beginning of FA in human subjects. They suggested that venous flows do not mix immediately after entering the upper branches, which might be a permanent phenomenon [58]. Similarly, López-Herrero et al. observed thin columns of fluorescein along the venous walls due to laminar flow [59]. To the best of our knowledge, this is the first OCT visualization of the layered venous laminar flow in the mouse retina, and further analysis on the radial B-scans using mutant animal models would provide useful information in the study of hemorheology, hemodynamics, and oxygenation in the retina. We could also observe alternating hyper-hypo-hyper reflective zones in the artery (green dotted box in Fig. 4(C)). This observed OCTA pattern in the arterial lumen might reflect an hourglass pattern due to shear flow-induced orientation change of erythrocytes within the vessel lumen. The hyporeflective zone in the middle of the artery has been attributed to the high shear flow-induced elongated erythrocytes, causing low backscattering of light [60]. Bernucci et al. demonstrated that intralipid injection can eliminate the hourglass pattern artifact in OCTA images of retinal vessels [61]. Further analysis of the intravascular OCT and OCTA intensity patterns through the radial scans would be useful for a better understanding of such flow characteristics.

5. Conclusions

In conclusion, the radially sliced OCT/OCTA revealed distinct reflectance profiles associated with vascular morphology and blood flow signatures for robust artery-vein differentiation. Future integration of automated vessel tracking will improve the usability of the proposed approach not only in the preclinical animal study but also in clinical practice.

Funding

National Eye Institute (P30 EY001792, R01 EY023522, R01 EY029673, R01 EY030101, R01 EY030842); Research to Prevent Blindness; University of Illinois at Chicago (Richard and Loan Hill Endowment); National Institute on Aging (T32AG057468).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016). [CrossRef]  

2. A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017). [CrossRef]  

3. K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017). [CrossRef]  

4. T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007). [CrossRef]  

5. M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019). [CrossRef]  

6. Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012). [CrossRef]  

7. X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020). [CrossRef]  

8. R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015). [CrossRef]  

9. R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016). [CrossRef]  

10. A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020). [CrossRef]  

11. A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018). [CrossRef]  

12. M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019). [CrossRef]  

13. M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).

14. M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019). [CrossRef]  

15. M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020). [CrossRef]  

16. X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019). [CrossRef]  

17. T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019). [CrossRef]  

18. B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017). [CrossRef]  

19. J. P. Syu, W. Buddhakosai, S. J. Chen, C. C. Ke, S. H. Chiou, and W. C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018). [CrossRef]  

20. C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019). [CrossRef]  

21. M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016). [CrossRef]  

22. J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019). [CrossRef]  

23. T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019). [CrossRef]  

24. K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019). [CrossRef]  

25. N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008). [CrossRef]  

26. A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019). [CrossRef]  

27. W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012). [CrossRef]  

28. M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013). [CrossRef]  

29. J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

30. M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

31. O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016). [CrossRef]  

32. S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020). [CrossRef]  

33. X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018). [CrossRef]  

34. G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013). [CrossRef]  

35. Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019). [CrossRef]  

36. K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007). [CrossRef]  

37. J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014). [CrossRef]  

38. D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013). [CrossRef]  

39. N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018). [CrossRef]  

40. T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019). [CrossRef]  

41. T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018). [CrossRef]  

42. T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018). [CrossRef]  

43. T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016). [CrossRef]  

44. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008). [CrossRef]  

45. S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016). [CrossRef]  

46. C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013). [CrossRef]  

47. S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015). [CrossRef]  

48. M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963). [CrossRef]  

49. D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016). [CrossRef]  

50. T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014). [CrossRef]  

51. T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013). [CrossRef]  

52. Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014). [CrossRef]  

53. G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016). [CrossRef]  

54. T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016). [CrossRef]  

55. T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

56. E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954). [CrossRef]  

57. A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014). [CrossRef]  

58. Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

59. F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020). [CrossRef]  

60. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011). [CrossRef]  

61. M. T. Bernucci, C. W. Merkle, and V. J. Srinivasan, “Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent,” Biomed. Opt. Express 9(3), 1020–1040 (2018). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
    [Crossref]
  2. A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
    [Crossref]
  3. K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
    [Crossref]
  4. T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
    [Crossref]
  5. M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
    [Crossref]
  6. Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
    [Crossref]
  7. X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
    [Crossref]
  8. R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
    [Crossref]
  9. R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
    [Crossref]
  10. A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
    [Crossref]
  11. A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
    [Crossref]
  12. M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
    [Crossref]
  13. M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).
  14. M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
    [Crossref]
  15. M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
    [Crossref]
  16. X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
    [Crossref]
  17. T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
    [Crossref]
  18. B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
    [Crossref]
  19. J. P. Syu, W. Buddhakosai, S. J. Chen, C. C. Ke, S. H. Chiou, and W. C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
    [Crossref]
  20. C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
    [Crossref]
  21. M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
    [Crossref]
  22. J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
    [Crossref]
  23. T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
    [Crossref]
  24. K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
    [Crossref]
  25. N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
    [Crossref]
  26. A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
    [Crossref]
  27. W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
    [Crossref]
  28. M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
    [Crossref]
  29. J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).
  30. M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).
  31. O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016).
    [Crossref]
  32. S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
    [Crossref]
  33. X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
    [Crossref]
  34. G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013).
    [Crossref]
  35. Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
    [Crossref]
  36. K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
    [Crossref]
  37. J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
    [Crossref]
  38. D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
    [Crossref]
  39. N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
    [Crossref]
  40. T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
    [Crossref]
  41. T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
    [Crossref]
  42. T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
    [Crossref]
  43. T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
    [Crossref]
  44. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [Crossref]
  45. S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016).
    [Crossref]
  46. C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
    [Crossref]
  47. S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
    [Crossref]
  48. M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
    [Crossref]
  49. D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
    [Crossref]
  50. T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
    [Crossref]
  51. T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
    [Crossref]
  52. Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
    [Crossref]
  53. G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
    [Crossref]
  54. T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
    [Crossref]
  55. T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).
  56. E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
    [Crossref]
  57. A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
    [Crossref]
  58. Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).
  59. F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
    [Crossref]
  60. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
    [Crossref]
  61. M. T. Bernucci, C. W. Merkle, and V. J. Srinivasan, “Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent,” Biomed. Opt. Express 9(3), 1020–1040 (2018).
    [Crossref]

2020 (5)

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

2019 (12)

T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]

Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]

M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]

2018 (8)

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

J. P. Syu, W. Buddhakosai, S. J. Chen, C. C. Ke, S. H. Chiou, and W. C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
[Crossref]

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

M. T. Bernucci, C. W. Merkle, and V. J. Srinivasan, “Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent,” Biomed. Opt. Express 9(3), 1020–1040 (2018).
[Crossref]

2017 (3)

B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

2016 (9)

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016).
[Crossref]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016).
[Crossref]

2015 (2)

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

2014 (4)

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

2013 (5)

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013).
[Crossref]

2012 (2)

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

2011 (2)

Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

2008 (2)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

2007 (2)

K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]

T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]

1963 (1)

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]

1954 (1)

E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]

Abdelhak, A.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Abend, S.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Alam, M.

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Alam, M. N.

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).

Albrecht, N. E.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Alevy, J.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Allingham, M. J.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Alten, F.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Arany, Z.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Aschinger, G.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Ashpole, N. M.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Asomugha, C.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Augustin, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Avraham, B. C.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Bahar, I.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Bailey, S. T.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Barabas, P.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Baumann, B.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Beaudet, A. L.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Beckmann, L.

Bernucci, M. T.

Bohat, R.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

Brandt, A. U.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Brück, A.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Buddhakosai, W.

Buhmann, C.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Bui, B. V.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Burger, C. A.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Burns, S. A.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]

Busik, J. V.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Byeon, S. H.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Cao, D.

Carretero, A.

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Catita, J.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

Cepurna, W.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Chakraborty, D.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Chan, K. K. W.

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Chauhan, B. C.

C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]

Chen, C. L.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Chen, F. K.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

Chen, J.

Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]

Chen, Q.

Chen, S.

Chen, S. J.

Chen, Y.

Chen, Z.

Cheung, C. Y.

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Chinnery, H. R.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Chiou, S. H.

Choi, Y. S.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Chui, T. Y.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

Claudia, K.

K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]

Clemens, C. R.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Connor, K. M.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Cousins, S. W.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Cringle, S. J.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

Csiszar, A.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Cui, N.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Curtis, T. M.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Dadon, S.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Dai, C.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

Dai, K.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Daniel, K.

K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]

De Boever, P.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

De Groef, L.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

De Strooper, B.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Dickinson, M. E.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Dobson, L. P.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Echegaray, J. J.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Eldar, I.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Elliott, M. H.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Estrada, R.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Eter, N.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Ewering, C.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Farsiu, S.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Fawzi, A. A.

Feeney, L.

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]

Fernandez-Avellaneda, P.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Fialová, S.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Freeman, W. M.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Freund, K. B.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Gahm, J. K.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Gao, S. S.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Garhöfer, G.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Gaspero, A.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Gast, T. J.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]

Gelders, G.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Glösmann, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Goldenberg-Cohen, N.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Grant, M. B.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Gu, X.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Haas, A.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Hadoux, X.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Hammer, S.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Harmening, W. M.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Harper, D. J.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Harris, N. R.

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

Hasanreisoglu, M.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Hassenstein, A.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

He, Z.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Helps, E. P.

E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]

Herzog, S. A.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Heussen, F. M.

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

Hidding, U.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Himmel, T.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Hirabayashi, K.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Hitzenberger, C. K.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Hogan, M. J.

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]

Holz, F. G.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Hooper, M. L.

C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]

Hormel, T. T.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Hsu, C. W.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Huang, D.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

Huang, S.

Huss, A.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Hussain, R. M.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Hwang, T. S.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Ichikawa-Shindo, Y.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Iesato, Y.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Iida, S.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Imai, A.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Izatt, J. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

Jayapala, M.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Jia, Y.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Jiang, A.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Jiang, D.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Jiao, S.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

Joussen, A. M.

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

Justice, M. J.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Kadas, E. M.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Kalaga, S.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Kalloniatis, M.

M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]

Kamiyoshi, A.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Kang, M. J.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Kashani, A. H.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Kassubek, J.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Kawasaki, R.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Kawate, H.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Ke, C. C.

Kearns, L. S.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Keseru, D.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Keseru, M.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Kim, S. S.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Kim, S. Y.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Kim, T. H.

T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

Kim, T.-H.

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

Kramer, M.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Krohne, T. U.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Kromer, R.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Kuo, W. C.

Kur, J.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Larsen, M.

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

Larsen, P. P.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Le, D.

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).

Lemmens, S.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Lengheimer, T.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Li, F.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Li, Q.-x.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Li, X. Q.

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

Li, Y.

Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]

Liang, H.

Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

Liang, Q.

Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

Lim, J. I.

Lim, J. K. H.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Liu, B. I.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Liu, C.

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

Liu, G.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

G. Liu and Z. Chen, “Advances in Doppler OCT,” Chin. Opt. Lett. 11(1), 011702 (2013).
[Crossref]

Liu, L.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Liu, Q.

Liu, W.

Liu, X.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

López-Herrero, F.

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

Lu, F.

Lu, Y.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

Ludolph, A. C.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Ma, J.

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Ma, Y.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Mackey, D. A.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Magno, A. L.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

Marziniak, M.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Masin, L.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Mast, N.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Matsui, S.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Mayer, B.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Mc, D. D.

E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]

McAllister, I. L.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

McElhatten, R. M.

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

McGahon, M. K.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

McGeown, J. G.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

McLaughlin, D.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

McLenachan, S.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

McMenamin, P. G.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

Mendes-Jorge, L.

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Merkle, C. W.

Mettu, P. S.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Meyer, J. H.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Mezu-Ndubuisi, O. J.

O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016).
[Crossref]

Michelle, Y.

K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

Moons, L.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Morgan, W. H.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

Morrison, J. C.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Motte, J.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Müller, H. P.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Munch, I. C.

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

Muñoz-Morales, A.

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

Murata, T.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Nacher, V.

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Nakamura, K.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Navarro, M.

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Neugebauer, H.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Nguyen, C. T. O.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Nguyen, T. T.

T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]

Nivison-Smith, L.

M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]

O’Hare, M.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Oberwahrenbrock, T.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Oh, J.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Osada, N.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Otalora, L.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Otto, M.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Ouyang, Y.

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

Park, S.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Patel, N. A.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Paudel, S.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Paul, F.

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Pi, S.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Pikuleva, I. A.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Pinkhardt, E.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Pircher, M.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Plasenzotti, R.

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

Puliafito, C. A.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

Rakoczy, E. P.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

Ramos, D.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Reagan, A. M.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Revolta, G.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Richter, G. M.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Rim, T. H.

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

Rodriguez-Baeza, A.

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Rosenfeld, P. J.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Ruberte, J.

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Ruddle, J. B.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

Rueda-Rueda, T.

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

Russell, J. F.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Saadane, A.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Saido, T. C.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Saint-Geniez, M.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Saito, T.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Sakurai, T.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Samuel, M. A.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Sánchez-Vicente, J. L.

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

Sarraf, D.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Scharf, D.

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

Schmetterer, L.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Schmitz-Valckenberg, S.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Scholfield, C. N.

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Seavitt, J. R.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Sebert, U.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Seidel, G.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Serneels, L.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Shao, Q.

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

Shen, M.

Shi, C.

Shi, Y.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Shindo, T.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Shu, X.

Singer, C.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Smith, C. A.

C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]

Soetikno, B. T.

Son, T.

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

Sonntag, W. E.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Srinivasan, V. J.

Stalmans, I.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Stemplewitz, B.

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

Stout, M. B.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Strack, C.

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

Su, E. N.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

Su, J. P.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Sweigard, H.

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Syu, J. P.

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

Tanaka, M.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Tang, F.

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Tham, C. C. Y.

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Thapa, D.

Theunis, J.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Tomasi, C.

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Tong, Y. H.

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Toriyama, Y.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Toslak, D.

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Tran, K. D.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Trichonas, G.

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

Trinh, M.

M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]

Tumani, H.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Udensi, U.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Ungvari, Z.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

van Wijngaarden, P.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Vandenabeele, M.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Veys, L.

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

Vingrys, A. J.

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

Wang, B.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

Wang, J.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Wang, J. J.

T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]

Wang, R. K.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

Weger, M.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Wei, X.

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Wei, Y.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Weinberger, D.

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Werkmeister, R. M.

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Westenskow, P. D.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Willerslev, A.

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

Wong, D. T.

Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

Wong, T. Y.

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]

Wright, W. S.

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

Xu, X.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Yadav, A. S.

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

Yamamoto, S.

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Yamauchi, A.

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

Yannuzzi, N. A.

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Yao, X.

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]

M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).

Yilmazer-Hanke, D.

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Young, A. L.

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Yu, D. Y.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

Yu, P. K.

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

Zalles, M.

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Zhan, H. J.

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Zhang, H. F.

B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

Zhang, M.

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

Zheng, F.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Zhu, D.

Zhu, T. P.

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Acta Ophthalmol. (1)

A. Willerslev, X. Q. Li, I. C. Munch, and M. Larsen, “Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations,” Acta Ophthalmol. 92(5), 461–464 (2014).
[Crossref]

Am. J. Ophthalmol. (1)

X. Xu, N. A. Yannuzzi, P. Fernandez-Avellaneda, J. J. Echegaray, K. D. Tran, J. F. Russell, N. A. Patel, R. M. Hussain, D. Sarraf, and K. B. Freund, “Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices,” Am. J. Ophthalmol. 207, 363–372 (2019).
[Crossref]

Am. J. Pathol. (3)

K. Hirabayashi, M. Tanaka, A. Imai, Y. Toriyama, Y. Iesato, T. Sakurai, A. Kamiyoshi, Y. Ichikawa-Shindo, H. Kawate, M. Tanaka, K. Dai, N. Cui, Y. Wei, K. Nakamura, S. Iida, S. Matsui, A. Yamauchi, T. Murata, and T. Shindo, “Development of a novel model of central retinal vascular occlusion and the therapeutic potential of the adrenomedullin-receptor activity-modifying protein 2 system,” Am. J. Pathol. 189(2), 449–466 (2019).
[Crossref]

A. Saadane, N. Mast, G. Trichonas, D. Chakraborty, S. Hammer, J. V. Busik, M. B. Grant, and I. A. Pikuleva, “Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal,” Am. J. Pathol. 189(2), 405–425 (2019).
[Crossref]

M. Saint-Geniez, A. Jiang, S. Abend, L. Liu, H. Sweigard, K. M. Connor, and Z. Arany, “PGC-1α regulates normal and pathological angiogenesis in the retina,” Am. J. Pathol. 182(1), 255–265 (2013).
[Crossref]

Arch. Soc. Esp. Oftalmol. (1)

F. López-Herrero, T. Rueda-Rueda, J. L. Sánchez-Vicente, and A. Muñoz-Morales, “Trilaminar venous flow: Beyond the fluorescein angiography phenomenon,” Arch. Soc. Esp. Oftalmol. 95(1), e3–e4 (2020).
[Crossref]

Biomed. Opt. Express (7)

M. T. Bernucci, C. W. Merkle, and V. J. Srinivasan, “Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent,” Biomed. Opt. Express 9(3), 1020–1040 (2018).
[Crossref]

T. Son, B. Wang, D. Thapa, Y. Lu, Y. Chen, D. Cao, and X. Yao, “Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers,” Biomed. Opt. Express 7(8), 3151–3162 (2016).
[Crossref]

S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016).
[Crossref]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “OCT feature analysis guided artery-vein differentiation in OCTA,” Biomed. Opt. Express 10(4), 2055–2066 (2019).
[Crossref]

M. Alam, D. Le, T. Son, J. I. Lim, and X. Yao, “AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography,” Biomed. Opt. Express 11(9), 5249–5257 (2020).
[Crossref]

B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref]

J. P. Syu, W. Buddhakosai, S. J. Chen, C. C. Ke, S. H. Chiou, and W. C. Kuo, “Supercontinuum source-based multi-contrast optical coherence tomography for rat retina imaging,” Biomed. Opt. Express 9(12), 6132–6144 (2018).
[Crossref]

BMC Ophthalmol. (1)

Y. Ouyang, Q. Shao, D. Scharf, A. M. Joussen, and F. M. Heussen, “An easy method to differentiate retinal arteries from veins by spectral domain optical coherence tomography: retrospective, observational case series,” BMC Ophthalmol. 14(1), 66 (2014).
[Crossref]

BMJ Open Ophth. (1)

K. K. W. Chan, F. Tang, C. C. Y. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ Open Ophth. 1(1), e000032 (2017).
[Crossref]

Cell Rep. (1)

N. E. Albrecht, J. Alevy, D. Jiang, C. A. Burger, B. I. Liu, F. Li, J. Wang, S. Y. Kim, C. W. Hsu, S. Kalaga, U. Udensi, C. Asomugha, R. Bohat, A. Gaspero, M. J. Justice, P. D. Westenskow, S. Yamamoto, J. R. Seavitt, A. L. Beaudet, M. E. Dickinson, and M. A. Samuel, “Rapid and integrative discovery of retina regulatory molecules,” Cell Rep. 24(9), 2506–2519 (2018).
[Crossref]

Chin. Opt. Lett. (1)

Curr. Med. Chem. (1)

D. Ramos, A. Carretero, M. Navarro, L. Mendes-Jorge, V. Nacher, A. Rodriguez-Baeza, and J. Ruberte, “Mimicking microvascular alterations of human diabetic retinopathy: a challenge for the mouse models,” Curr. Med. Chem. 20(26), 3200–3217 (2013).
[Crossref]

Diabetes Care (1)

T. T. Nguyen, J. J. Wang, and T. Y. Wong, “Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications,” Diabetes Care 30(10), 2708–2715 (2007).
[Crossref]

Exp. Biol. Med. (1)

X. Yao, M. N. Alam, D. Le, and D. Toslak, “Quantitative optical coherence tomography angiography: A review,” Exp. Biol. Med. 245(4), 301–312 (2020).
[Crossref]

Exp. Biol. Med. (Maywood) (3)

X. Yao, T. Son, T. H. Kim, and Y. Lu, “Functional optical coherence tomography of retinal photoreceptors,” Exp. Biol. Med. (Maywood) 243(17-18), 1256–1264 (2018).
[Crossref]

T. Son, M. Alam, T. H. Kim, C. Liu, D. Toslak, and X. Yao, “Near infrared oximetry-guided artery-vein classification in optical coherence tomography angiography,” Exp. Biol. Med. (Maywood) 244(10), 813–818 (2019).
[Crossref]

T. H. Kim, T. Son, and X. Yao, “Feature article: Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye,” Exp. Biol. Med. (Maywood) 244(10), 819–823 (2019).
[Crossref]

Exp. Eye Res. (4)

S. McLenachan, A. L. Magno, D. Ramos, J. Catita, P. G. McMenamin, F. K. Chen, E. P. Rakoczy, and J. Ruberte, “Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice,” Exp. Eye Res. 138, 6–21 (2015).
[Crossref]

J. H. Meyer, P. P. Larsen, C. Strack, W. M. Harmening, T. U. Krohne, F. G. Holz, and S. Schmitz-Valckenberg, “Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization,” Exp. Eye Res. 184, 162–171 (2019).
[Crossref]

W. S. Wright, A. S. Yadav, R. M. McElhatten, and N. R. Harris, “Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2(Akita) mouse,” Exp. Eye Res. 98(1), 9–15 (2012).
[Crossref]

N. Goldenberg-Cohen, S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger, and I. Bahar, “Molecular and histological changes following central retinal artery occlusion in a mouse model,” Exp. Eye Res. 87(4), 327–333 (2008).
[Crossref]

Eye (1)

T. H. Rim, Y. S. Choi, S. S. Kim, M. J. Kang, J. Oh, S. Park, and S. H. Byeon, “Retinal vessel structure measurement using spectral-domain optical coherence tomography,” Eye 30(1), 111–119 (2016).
[Crossref]

IEEE Trans. Med. Imaging (1)

R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, “Retinal artery-vein classification via topology estimation,” IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015).
[Crossref]

Invest. Ophthalmol. Visual Sci. (8)

Y. Ma, R. Kawasaki, L. P. Dobson, J. B. Ruddle, L. S. Kearns, T. Y. Wong, and D. A. Mackey, “Quantitative analysis of retinal vessel attenuation in eyes with retinitis pigmentosa,” Invest. Ophthalmol. Visual Sci. 53(7), 4306–4314 (2012).
[Crossref]

S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT27–36 (2016).
[Crossref]

C. A. Smith, M. L. Hooper, and B. C. Chauhan, “Optical coherence tomography angiography in mice: quantitative analysis after experimental models of retinal damage,” Invest. Ophthalmol. Visual Sci. 60(5), 1556–1565 (2019).
[Crossref]

J. K. H. Lim, Q.-x. Li, H. R. Chinnery, Z. He, A. J. Vingrys, B. V. Bui, and C. T. O. Nguyen, “Retinal vascular reactivity in a mouse model of Alzheimer’s disease,” Invest. Ophthalmol. Visual Sci. 59(9), 3946 (2018).

Q. Liang, D. T. Wong, and H. Liang, “The retinal venous laminar flow in fluorescein angiography may be a permanent phenomenon,” Invest. Ophthalmol. Visual Sci. 52(14), 2161 (2011).

D. Y. Yu, E. N. Su, S. J. Cringle, W. H. Morgan, I. L. McAllister, and P. K. Yu, “Local modulation of retinal vein tone,” Invest. Ophthalmol. Visual Sci. 57(2), 412–419 (2016).
[Crossref]

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 54(10), 7115–7124 (2013).
[Crossref]

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(13), 7998–8003 (2013).
[Crossref]

J. Biomed. Opt. (2)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref]

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref]

J. Biophotonics (1)

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

J. Physiol (1)

E. P. Helps and D. D. Mc, “Observations on laminar flow in veins,” J. Physiol 124(3), 631–639 (1954).
[Crossref]

J. Ultrastruct. Res. (1)

M. J. Hogan and L. Feeney, “The ultrastructure of the retinal blood vessels. I. the large vessels,” J. Ultrastruct. Res. 9(1-2), 10–28 (1963).
[Crossref]

JAMA Ophthalmol. (1)

G. Seidel, G. Aschinger, C. Singer, S. A. Herzog, M. Weger, A. Haas, R. M. Werkmeister, L. Schmetterer, and G. Garhöfer, “Estimating retinal blood flow velocities by optical coherence tomography,” JAMA Ophthalmol. 134(10), 1104–1110 (2016).
[Crossref]

Microvasc. Res. (1)

T. P. Zhu, Y. H. Tong, H. J. Zhan, and J. Ma, “Update on retinal vessel structure measurement with spectral-domain optical coherence tomography,” Microvasc. Res. 95, 7–14 (2014).
[Crossref]

Neurobiol. Aging (1)

A. M. Reagan, X. Gu, S. Paudel, N. M. Ashpole, M. Zalles, W. E. Sonntag, Z. Ungvari, A. Csiszar, L. Otalora, W. M. Freeman, M. B. Stout, and M. H. Elliott, “Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency,” Neurobiol. Aging 71, 1–12 (2018).
[Crossref]

Neurol. Res. Pract. (1)

A. Abdelhak, A. Huss, A. Brück, U. Sebert, B. Mayer, H. P. Müller, H. Tumani, M. Otto, D. Yilmazer-Hanke, A. C. Ludolph, J. Kassubek, E. Pinkhardt, and H. Neugebauer, “Optical coherence tomography-based assessment of retinal vascular pathology in cerebral small vessel disease,” Neurol. Res. Pract. 2(1), 13 (2020).
[Crossref]

Optom. Vis. Sci. (1)

O. J. Mezu-Ndubuisi, “In vivo angiography quantifies oxygen-induced retinopathy vascular recovery,” Optom. Vis. Sci. 93(10), 1268–1279 (2016).
[Crossref]

PLoS One (3)

R. Kromer, C. Buhmann, U. Hidding, M. Keseru, D. Keseru, A. Hassenstein, and B. Stemplewitz, “Evaluation of retinal vessel morphology in patients with Parkinson's disease using optical coherence tomography,” PLoS One 11(8), e0161136 (2016).
[Crossref]

M. Augustin, S. Fialová, T. Himmel, M. Glösmann, T. Lengheimer, D. J. Harper, R. Plasenzotti, M. Pircher, C. K. Hitzenberger, and B. Baumann, “Multi-Functional OCT enables longitudinal study of retinal changes in a VLDLR knockout mouse model,” PLoS One 11(10), e0164419 (2016).
[Crossref]

J. Motte, F. Alten, C. Ewering, N. Osada, E. M. Kadas, A. U. Brandt, T. Oberwahrenbrock, C. R. Clemens, N. Eter, F. Paul, and M. Marziniak, “Vessel labeling in combined confocal scanning laser ophthalmoscopy and optical coherence tomography images: criteria for blood vessel discrimination,” PLoS One 9(9), e102034 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

S. Pi, T. T. Hormel, X. Wei, W. Cepurna, B. Wang, J. C. Morrison, and Y. Jia, “Retinal capillary oximetry with visible light optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 117(21), 11658–11666 (2020).
[Crossref]

Proc. SPIE (1)

K. Claudia, K. Daniel, and Y. Michelle, “Blood vessel classification into arteries and veins in retinal images,” Proc. SPIE 6512, 651247 (2007).
[Crossref]

Prog. Retinal Eye Res. (1)

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retinal Eye Res. 60, 66–100 (2017).
[Crossref]

Sci. Rep. (1)

T.-H. Kim, T. Son, D. Le, and X. Yao, “Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice,” Sci. Rep. 9(1), 16685 (2019).
[Crossref]

Trans. Vis. Sci. Tech. (3)

M. Trinh, M. Kalloniatis, and L. Nivison-Smith, “Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography,” Trans. Vis. Sci. Tech. 8(4), 20 (2019).
[Crossref]

M. Alam, J. I. Lim, D. Toslak, and X. Yao, “Differential artery-vein analysis improves the performance of OCTA staging of sickle cell retinopathy,” Trans. Vis. Sci. Tech. 8(2), 3 (2019).
[Crossref]

T. H. Kim, T. Son, Y. Lu, M. Alam, and X. Yao, “Comparative optical coherence tomography angiography of wild-type and rd10 mouse retinas,” Trans. Vis. Sci. Tech. 7(6), 42 (2018).
[Crossref]

Translational Biophotonics (1)

Y. Li, J. Chen, and Z. Chen, “Advances in Doppler optical coherence tomography and angiography,” Translational Biophotonics 1(1-2), e201900005 (2019).
[Crossref]

Other (3)

M. Vandenabeele, L. Veys, S. Lemmens, X. Hadoux, G. Gelders, L. Masin, L. Serneels, J. Theunis, T. Saito, T. C. Saido, M. Jayapala, P. De Boever, B. De Strooper, I. Stalmans, P. van Wijngaarden, L. Moons, and L. De Groef, “The APP NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research,” bioRxiv, 2020.2007.2025.220707 (2020).

M. N. Alam, D. Le, and X. Yao, “Differential artery-vein analysis in quantitative retinal imaging: a review,” Quantitative Imaging in Medicine and Surgery; Publish Ahead of Print (2020).

T. M. Curtis, D. McLaughlin, M. O’Hare, J. Kur, P. Barabas, G. Revolta, C. N. Scholfield, J. G. McGeown, and M. K. McGahon, “Isolation of retinal arterioles for ex vivo cell physiology studies,” Journal of visualized experiments : JoVE, 137 (2018).

Supplementary Material (3)

NameDescription
» Visualization 1       OCT (left) and OCTA (right) B-scan fly-through movies.
» Visualization 2       Radial OCT B-scan fly-through movies. B6SJLF1/J mouse retina (left) and C57BL/6J mouse retina (right).
» Visualization 3       Real-time OCT (top) and OCTA (bottom) recordings show the flow of moving blood cells inside the lumens of arteries (left) and veins (right).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Representative en face OCT (A) and OCTA (B) volumes acquired by a raster scan protocol. To reconstruct radial B-scans, the center of circle with radius r and step angle θ was specified at the ONH in polar coordinates. Radial OCT B-scans of an artery (C1), a vein (C2), and an avascular region (C3), and radial OCTA B-scans of an artery (D1), a vein (D2), and an avascular region (D3). White arrows in inset figures (C1 and C2) indicate the boundaries between the vessel and surrounding tissues. ONH: optic nerve head; IPL: inner plexiform layer. Scale bars: 100 μm.
Fig. 2.
Fig. 2. Representative radial OCT B-scan images of 3 arteries and 3 veins. Arteries reveal hyperreflective boundaries along the vessel walls (yellow arrows), while veins lacking boundary signals show a hyperreflective zone at the bottom half of the vessel (blue arrow). Normalized intensity maps constructed from 39 arteries (C1) and 35 veins (D1). Each column represents single vessel information. Corresponding average intensity plots of artery (C2) and vein (D2). Solid curves represent the average values, and the shaded areas represent the standard deviations. Data were collected from 7 different mice. All images were processed and normalized on a linear scale. (E) En face OCT image of a mouse retina used in DOCT processing. Arteries and veins were independently classified by the radial OCT B-scans (F) and Doppler angle (G). Circular scanned OCT image (G1) and circular scanned DOCT image (G2) with blood flow velocity information. Red color indicates the artery, and blue color indicates the vein. ONH: optic nerve head. Scale bars: 200 μm.
Fig. 3.
Fig. 3. En face OCT images and corresponding vascular images of a B6SJLF1/J mouse (A) and a C57BL/6J (B). Red color for arteries and blue color for veins. Original en face OCTA images (C) and the same en face images with pseudo-colors (red for arteries and blue for veins) after AV classification (D). (E) AV classifications on peripheral retinal OCTA on different cardinal axes: Nasal (E1), dorsal (E2), ventral (E3), and temporal (E4) area. (F) Relative axial positions of artery (F1) and vein (F2) based on the ONH. (G) Box-scatter plot of vessel width measurement from seven B6SJLF1/J mice (N = 39 for arteries and N = 35 for veins) and seven C57BL/6J mice (N = 41 for arteries and N = 39 for veins). Scale bars: 200 μm.
Fig. 4.
Fig. 4. Different blood flow patterns between artery (A) and vein (B). Artery in OCT (A1) and OCTA (A2) and composite of OCT and OCTA (A3). Highlighted red color indicates OCTA information. Vein in OCT (B1) and OCTA (B2) and composite of OCT and OCTA (B3). Highlighted blue color indicates OCTA information. (C) Averaged OCTA B-scan containing both artery and vein. The artery reveals an alternating hyperreflective and hyporeflective zones (green dotted box). The vein displays a hyporeflective zone (blue arrow) and a hyperreflective zone (white arrow). Scale bars: 200 μm.
Fig. 5.
Fig. 5. (A) Illustration of the retinal vascular tree of the rat. (B) Light micrographs of first-order arterioles (1°), second-order arteriole (2°), capillary, and venule. Scale bars represent 10 µm. This is adapted from Curtis, T. M., McLaughlin, D., O'Hare, M., Kur, J., Barabas, P., Revolta, G., Scholfield, C. N., McGeown, J. G., McGahon, M. K. Isolation of Retinal Arterioles for Ex Vivo Cell Physiology Studies. J. Vis. Exp. (137), e57944, doi:10.3791/57944 (2018) [55].

Metrics