M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[Crossref]
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[Crossref]
M. Y. Lombardi and M. Assem, “Glioblastoma genomics: a very complicated story,” in Glioblastoma [Internet] (Codon Publications, 2017).
J. I. Ausman, W. R. Shapiro, and D. P. Rall, “Studies on the chemotherapy of experimental brain tumors: development of an experimental model,” Cancer Res. 30, 2394–2400 (1970).
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[Crossref]
J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. 32(2), 277–284 (1993).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Sci. Rep. 9(1), 5499 (2019).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” Selected Topics in Optical Coherence Tomography, 21 (2012).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
J. Zhu, S. P. Chong, W. Zhou, and V. J. Srinivasan, “Noninvasive, in vivo rodent brain optical coherence tomography at 2.1 microns,” Opt. Lett. 44(17), 4147–4150 (2019).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, “Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,” Sci. Rep. 8(1), 11614 (2018).
[Crossref]
W. M. Wells, A. Colchester, and S. Delp, Medical Image Computing and Computer-Assisted Intervention-MICCAI'98: First International Conference, Cambridge, MA, USA, October 11-13, 1998, Proceedings (Springer, 2006).
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
O. Liba, E. D. SoRelle, D. Sen, and A. de La Zerda, “Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging,” Sci. Rep. 6(1), 23337 (2016).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
W. M. Wells, A. Colchester, and S. Delp, Medical Image Computing and Computer-Assisted Intervention-MICCAI'98: First International Conference, Cambridge, MA, USA, October 11-13, 1998, Proceedings (Springer, 2006).
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Sci. Rep. 9(1), 5499 (2019).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
Y. Pan, J. You, N. D. Volkow, K. Park, and C. Du, “Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo,” NeuroImage 103, 492–501 (2014).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]
K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, “Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,” Sci. Rep. 8(1), 11614 (2018).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
P. A. Valdes, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” FOC 40(3), E8 (2016).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Sci. Rep. 9(1), 5499 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” Selected Topics in Optical Coherence Tomography, 21 (2012).
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
P. J. Marchand, D. Szlag, J. Extermann, A. Bouwens, D. Nguyen, M. Rudin, and T. Lasser, “Imaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 1.3 µm,” Opt. Lett. 43(8), 1782–1785 (2018).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, and W.-C. A. Lee, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, (International Society for Optics and Photonics, 2006), 60782Z.
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
O. Liba, E. D. SoRelle, D. Sen, and A. de La Zerda, “Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging,” Sci. Rep. 6(1), 23337 (2016).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
M. Y. Lombardi and M. Assem, “Glioblastoma genomics: a very complicated story,” in Glioblastoma [Internet] (Codon Publications, 2017).
P. A. Valdes, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” FOC 40(3), E8 (2016).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Sci. Rep. 9(1), 5499 (2019).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. Van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
N. Katta, A. D. Estrada, A. B. McElroy, A. Gruslova, M. Oglesby, A. G. Cabe, M. D. Feldman, R. D. Fleming, A. J. Brenner, and T. E. Milner, “Laser brain cancer surgery in a xenograft model guided by optical coherence tomography,” Theranostics 9(12), 3555–3564 (2019).
[Crossref]
P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
Y. Pan, J. You, N. D. Volkow, K. Park, and C. Du, “Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo,” NeuroImage 103, 492–501 (2014).
[Crossref]
Y. Pan, J. You, N. D. Volkow, K. Park, and C. Du, “Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo,” NeuroImage 103, 492–501 (2014).
[Crossref]
K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, “Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,” Sci. Rep. 8(1), 11614 (2018).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12(1), 24 (2015).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, “Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,” Sci. Rep. 8(1), 11614 (2018).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
J. I. Ausman, W. R. Shapiro, and D. P. Rall, “Studies on the chemotherapy of experimental brain tumors: development of an experimental model,” Cancer Res. 30, 2394–2400 (1970).
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
P. A. Valdes, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” FOC 40(3), E8 (2016).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12(1), 24 (2015).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
M. Sato, K. Eto, J. Masuta, K. Inoue, R. Kurotani, H. Abe, and I. Nishidate, “In Vivo Rat Brain Imaging through Full-Field Optical Coherence Microscopy Using an Ultrathin Short Multimode Fiber Probe,” Appl. Sci. 9(2), 216 (2019).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
E. M. Lankenau, M. Krug, S. Oelckers, N. Schrage, T. Just, and G. Hüttmann, “iOCT with surgical microscopes: a new imaging during microsurgery,” Adv. Opt. Technol. 2(3), 233–239 (2013).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
M. Finke, S. Kantelhardt, A. Schlaefer, R. Bruder, E. Lankenau, A. Giese, and A. Schweikard, “Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography,” Int. J. Med. Robotics Comput. Assist. Surg. 8(3), 327–336 (2012).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
O. Liba, E. D. SoRelle, D. Sen, and A. de La Zerda, “Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging,” Sci. Rep. 6(1), 23337 (2016).
[Crossref]
J. I. Ausman, W. R. Shapiro, and D. P. Rall, “Studies on the chemotherapy of experimental brain tumors: development of an experimental model,” Cancer Res. 30, 2394–2400 (1970).
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, “Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,” Sci. Rep. 8(1), 11614 (2018).
[Crossref]
P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
K. Urbańska, J. Sokołowska, M. Szmidt, and P. Sysa, “Glioblastoma multiforme–an overview,” Contemp. Oncol. (Pozn) 18(5), 307–312 (2014).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
O. Liba, E. D. SoRelle, D. Sen, and A. de La Zerda, “Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging,” Sci. Rep. 6(1), 23337 (2016).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
J. Zhu, S. P. Chong, W. Zhou, and V. J. Srinivasan, “Noninvasive, in vivo rodent brain optical coherence tomography at 2.1 microns,” Opt. Lett. 44(17), 4147–4150 (2019).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
V. J. Srinivasan, A. C. Chan, and E. Y. Lam, “Doppler OCT and OCT angiography for in vivo imaging of vascular physiology,” Selected Topics in Optical Coherence Tomography, 21 (2012).
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
M. M. Koletar, A. Dorr, M. E. Brown, J. McLaurin, and B. Stefanovic, “Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two–photon fluorescence microscopy of neurovascular function,” Sci. Rep. 9(1), 5499 (2019).
[Crossref]
H. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. 151(5), 507–517 (2009).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]
K. Urbańska, J. Sokołowska, M. Szmidt, and P. Sysa, “Glioblastoma multiforme–an overview,” Contemp. Oncol. (Pozn) 18(5), 307–312 (2014).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
P. J. Marchand, D. Szlag, J. Extermann, A. Bouwens, D. Nguyen, M. Rudin, and T. Lasser, “Imaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 1.3 µm,” Opt. Lett. 43(8), 1782–1785 (2018).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
K. Urbańska, J. Sokołowska, M. Szmidt, and P. Sysa, “Glioblastoma multiforme–an overview,” Contemp. Oncol. (Pozn) 18(5), 307–312 (2014).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
S. Takano, “Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation,” Brain Tumor Pathol. 29(2), 73–86 (2012).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, M. Bonsanto, R. Huber, and R. Brinkmann, “Ex vivo and in vivo imaging of human brain tissue with different OCT systems,” in European Conference on Biomedical Optics, (Optical Society of America, 2019), 11078_11049.
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
S. Doblas, T. He, D. Saunders, J. Hoyle, N. Smith, Q. Pye, M. Lerner, R. L. Jensen, and R. A. Towner, “In vivo characterization of several rodent glioma models by 1H MRS,” NMR Biomed. 25(4), 685–694 (2012).
[Crossref]
T. Szatmári, K. Lumniczky, S. Désaknai, S. Trajcevski, E. J. Hídvégi, H. Hamada, and G. Sáfrány, “Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy,” Cancer Sci. 97(6), 546–553 (2006).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
K. Urbańska, J. Sokołowska, M. Szmidt, and P. Sysa, “Glioblastoma multiforme–an overview,” Contemp. Oncol. (Pozn) 18(5), 307–312 (2014).
[Crossref]
B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]
P. A. Valdes, D. W. Roberts, F.-K. Lu, and A. Golby, “Optical technologies for intraoperative neurosurgical guidance,” FOC 40(3), E8 (2016).
[Crossref]
M. Parravano, L. Querques, F. Scarinci, P. Giorno, D. De Geronimo, R. Gattegna, M. Varano, F. Bandello, and G. Querques, “Optical coherence tomography angiography in treated type 2 neovascularization undergoing monthly anti-VEGF treatment,” Acta Ophthalmol. 95(5), e425–e426 (2017).
[Crossref]
E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
Y. Pan, J. You, N. D. Volkow, K. Park, and C. Du, “Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo,” NeuroImage 103, 492–501 (2014).
[Crossref]
L. Kuehlewein, K. K. Dansingani, E. Talisa, M. A. Bonini Filho, N. A. Iafe, T. L. Lenis, K. B. Freund, N. K. Waheed, J. S. Duker, and S. R. Sadda, “Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration,” Retina 35(11), 2229–2235 (2015).
[Crossref]
Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]
W. M. Wells, A. Colchester, and S. Delp, Medical Image Computing and Computer-Assisted Intervention-MICCAI'98: First International Conference, Cambridge, MA, USA, October 11-13, 1998, Proceedings (Springer, 2006).
M. Lenz, R. Krug, C. Dillmann, R. Stroop, N. C. Gerhardt, H. Welp, K. Schmieder, and M. R. Hofmann, “Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref]
H. Dolezyczek, S. Tamborski, P. Majka, D. M. Sampson, M. Wojtkowski, G. Wilczynski, M. Szkulmowski, and M. Malinowska, “In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke,” Neurophotonics 7(01), 1 (2020).
[Crossref]
K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, and M. Szkulmowski, “Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos,” Sci. Rep. 7(1), 4165 (2017).
[Crossref]
S. Tamborski, H. C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, and M. Szkulmowski, “Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain,” Biomed. Opt. Express 7(11), 4400–4414 (2016).
[Crossref]
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref]
M. Miyai, H. Tomita, A. Soeda, H. Yano, T. Iwama, and A. Hara, “Current trends in mouse models of glioblastoma,” J. Neuro-Oncol. 135(3), 423–432 (2017).
[Crossref]
K. Yashin, M. Karabut, V. Fedoseeva, A. Khalansky, L. Matveev, V. Elagin, S. Kuznetsov, E. Kiseleva, L. Y. Kravets, I. Medyanik, and N. Gladkova, “Multimodal optical coherence tomography in visualization of brain tissue structure at glioblastoma (experimental study),” Sovrem. Tehnol. Med. 8(1), 73–81 (2016).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, A. A. Moiseev, S. S. Kuznetsov, P. A. Shilyagin, G. V. Gelikonov, I. A. Medyanik, L. Y. Kravets, and A. A. Potapov, “Cross-polarization optical coherence tomography for brain tumor imaging,” Front. Oncol. 9, 201 (2019).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
K. S. Yashin, E. B. Kiseleva, E. V. Gubarkova, L. A. Matveev, M. M. Karabut, V. V. Elagin, M. A. Sirotkina, I. A. Medyanik, L. Y. Kravets, and N. D. Gladkova, “Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma,” in Clinical and translational neurophotonics, (International Society for Optics and Photonics, 2017), 100500Z.
C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
E. D. SoRelle, D. W. Yecies, O. Liba, C. F. Bennett, C.-M. Graef, R. Dutta, S. S. Mitra, L.-M. Joubert, S. H. Cheshier, and G. A. Grant, “Wide-field dynamic monitoring of immune cell trafficking in murine models of glioblastoma,” bioRxiv, 220954 (2017).
Y. Pan, J. You, N. D. Volkow, K. Park, and C. Du, “Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo,” NeuroImage 103, 492–501 (2014).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
D. Yecies, O. Liba, E. D. SoRelle, R. Dutta, E. Yuan, H. Vogel, G. A. Grant, and A. de la Zerda, “Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging,” Sci. Rep. 9(1), 10388 (2019).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
H. Takahashi, K. Kato, K. Ueyama, M. Kobayashi, G. Baik, Y. Yukawa, J.-i. Suehiro, and Y. T. Matsunaga, “Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography,” Sci. Rep. 7(1), 42426 (2017).
[Crossref]
E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Timofeeva, V. V. Kudelkina, A. I. Alekseeva, S. V. Meshkova, A. V. Polozova, G. V. Gelikonov, and E. V. Zagaynova, “Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection,” Neurophotonics 6(03), 1 (2019).
[Crossref]
S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]
X. Yu, C. Hu, W. Zhang, J. Zhou, Q. Ding, M. Sadiq, Z. Fan, Z. Yuan, and L. Liu, “Feasibility evaluation of micro-optical coherence tomography (µOCT) for rapid brain tumor type and grade discriminations: µOCT images versus pathology,” BMC Med. Imaging 19(1), 1–12 (2019).
[Crossref]
E. A. Genina, A. N. Bashkatov, D. K. Tuchina, P. A. Dyachenko Timoshina, N. Navolokin, A. Shirokov, A. Khorovodov, A. Terskov, M. Klimova, A. Mamedova, I. Blokhina, I. Agranovich, E. Zinchenko, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, “Optical properties of brain tissues at the different stages of glioma development in rats: pilot study,” Biomed. Opt. Express 10(10), 5182–5197 (2019).
[Crossref]
E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One 6(11), e27385 (2011).
[Crossref]
V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12(1), 24 (2015).
[Crossref]