M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
A. BenTaieb and G. Hamarneh, “Topology aware fully convolutional networks for histology gland segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, eds. (Springer International Publishing, 2016), pp. 460–468.
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
M. D. Bloice, P. M. Roth, and A. Holzinger, “Biomedical image augmentation using Augmentor,” Bioinformatics 35(21), 4522–4524 (2019).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” CoRR abs/1505.04597 (2015).
J. C. Mainstone, A. S. Bruce, and T. R. Golding, “Tear meniscus measurement in the diagnosis of dry eye,” Curr. Eye Res. 15(6), 653–661 (1996).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
H. H. Chan, Y. Zhao, T. A. Tun, and L. Tong, “Repeatability of tear meniscus evaluation using spectral-domain Cirrusreg HD-OCT and time-domain Visantereg OCT,” Contact Lens and Anterior Eye 38(5), 368–372 (2015).
[Crossref]
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
F. Chollet et al., “Keras,” https://keras.io (2015).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.
K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” (2017).
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
J. G. Fujimoto and W. Drexler, “Introduction to OCT,” in Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), pp. 3–64.
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv (2018).
K. F. Farrand, M. Fridman, I. Özer Stillman, and D. A. Schaumberg, “Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older,” Am. J. Ophthalmol. 182, 90–98 (2017).
[Crossref]
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
P. Arriola-Villalobos, J. I. Fernandez-Vigo, D. Diaz-Valle, J. Almendral-Gomez, C. Fernandez-Perez, and J. M. Benitez-Del-Castillo, “Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with Fourier-domain optical coherence tomography,” Cornea 36(2), 183–188 (2017).
[Crossref]
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” CoRR abs/1505.04597 (2015).
K. F. Farrand, M. Fridman, I. Özer Stillman, and D. A. Schaumberg, “Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older,” Am. J. Ophthalmol. 182, 90–98 (2017).
[Crossref]
J. G. Fujimoto and W. Drexler, “Introduction to OCT,” in Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), pp. 3–64.
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
J. L. Gayton, “Etiology, prevalence, and treatment of dry eye disease,” Clin. Ophthalmol. 3, 405–412 (2009).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” (2017).
T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.
K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” (2017).
J. C. Mainstone, A. S. Bruce, and T. R. Golding, “Tear meniscus measurement in the diagnosis of dry eye,” Curr. Eye Res. 15(6), 653–661 (1996).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
A. BenTaieb and G. Hamarneh, “Topology aware fully convolutional networks for histology gland segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, eds. (Springer International Publishing, 2016), pp. 460–468.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” (2017).
T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.
M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: Achievements and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: Achievements and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).
[Crossref]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Neural Inf. Process. Syst.25(2), (2012).
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
M. D. Bloice, P. M. Roth, and A. Holzinger, “Biomedical image augmentation using Augmentor,” Bioinformatics 35(21), 4522–4524 (2019).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” CoRR abs/1502.03167 (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: Achievements and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: Achievements and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).
[Crossref]
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
H. Oguz, N. Yokoi, and S. Kinoshita, “The height and radius of the tear meniscus and methods for examining these parameters,” Cornea 19(4), 497–500 (2000).
[Crossref]
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Neural Inf. Process. Syst.25(2), (2012).
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
D. I. Park, H. Lew, and S. Y. Lee, “Tear meniscus measurement in nasolacrimal duct obstruction patients with fourier-domain optical coherence tomography: novel three-point capture method,” Acta Ophthalmol. 90(8), 783–787 (2012).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
D. I. Park, H. Lew, and S. Y. Lee, “Tear meniscus measurement in nasolacrimal duct obstruction patients with fourier-domain optical coherence tomography: novel three-point capture method,” Acta Ophthalmol. 90(8), 783–787 (2012).
[Crossref]
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE Computer Society, Los Alamitos, CA, USA, 2017), pp. 2999–3007.
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), ICML ’09, pp. 873–880.
J. C. Mainstone, A. S. Bruce, and T. R. Golding, “Tear meniscus measurement in the diagnosis of dry eye,” Curr. Eye Res. 15(6), 653–661 (1996).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), ICML ’09, pp. 873–880.
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
H. Oguz, N. Yokoi, and S. Kinoshita, “The height and radius of the tear meniscus and methods for examining these parameters,” Cornea 19(4), 497–500 (2000).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
K. F. Farrand, M. Fridman, I. Özer Stillman, and D. A. Schaumberg, “Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older,” Am. J. Ophthalmol. 182, 90–98 (2017).
[Crossref]
D. I. Park, H. Lew, and S. Y. Lee, “Tear meniscus measurement in nasolacrimal duct obstruction patients with fourier-domain optical coherence tomography: novel three-point capture method,” Acta Ophthalmol. 90(8), 783–787 (2012).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), ICML ’09, pp. 873–880.
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in MICCAI, (2017).
J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv (2018).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” CoRR abs/1505.04597 (2015).
F. Rosenblatt, The Perceptron, a perceiving and recognizing automaton (project Para), Report: Cornell Aeronautical Laboratory (Cornell Aeronautical Laboratory, 1957).
M. D. Bloice, P. M. Roth, and A. Holzinger, “Biomedical image augmentation using Augmentor,” Bioinformatics 35(21), 4522–4524 (2019).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
K. F. Farrand, M. Fridman, I. Özer Stillman, and D. A. Schaumberg, “Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older,” Am. J. Ophthalmol. 182, 90–98 (2017).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in MICCAI, (2017).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Neural Inf. Process. Syst.25(2), (2012).
S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” CoRR abs/1502.03167 (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
P. F. Christ, F. Ettlinger, F. Grün, M. E. A. Elshaer, J. Lipková, S. Schlecht, F. Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anastasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann, and B. H. Menze, “Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks,” CoRR abs/1702.05970 (2017).
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in MICCAI, (2017).
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
H. H. Chan, Y. Zhao, T. A. Tun, and L. Tong, “Repeatability of tear meniscus evaluation using spectral-domain Cirrusreg HD-OCT and time-domain Visantereg OCT,” Contact Lens and Anterior Eye 38(5), 368–372 (2015).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
H. H. Chan, Y. Zhao, T. A. Tun, and L. Tong, “Repeatability of tear meniscus evaluation using spectral-domain Cirrusreg HD-OCT and time-domain Visantereg OCT,” Contact Lens and Anterior Eye 38(5), 368–372 (2015).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
A. Uchida, M. Uchino, E. Goto, E. Hosaka, Y. Kasuya, K. Fukagawa, M. Dogru, Y. Ogawa, and K. Tsubota, “Noninvasive interference tear meniscometry in dry eye patients with sjögren syndrome,” Am. J. Ophthalmol. 144(2), 232–237.e1 (2007).
[Crossref]
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 277–318.
R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).
[Crossref]
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in MICCAI, (2017).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in MICCAI, (2017).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology 125(4), 549–558 (2018).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
H. Stegmann, V. Aranha dos Santos, A. Messner, A. Unterhuber, D. Schmidl, G. Garhöfer, L. Schmetterer, and R. M. Werkmeister, “Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 10(6), 2744–2756 (2019).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, H. Stegmann, M. Pfister, A. Messner, G. Schmidinger, G. Garhöfer, and R. M. Werkmeister, “CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning,” Biomed. Opt. Express 10(2), 622–641 (2019).
[Crossref]
M. Pfister, K. Schützenberger, U. Pfeiffenberger, A. Messner, Z. Chen, V. A. dos Santos, S. Puchner, G. Garhöfer, L. Schmetterer, M. Gröschl, and R. M. Werkmeister, “Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks,” Biomed. Opt. Express 10(3), 1315–1328 (2019).
[Crossref]
M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. Aranha dos Santos, G. Garhöfer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]
V. Aranha dos Santos, L. Schmetterer, M. Gröschl, G. Garhöfer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]
R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 54(8), 5578–5583 (2013).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
R. Fukuda, T. Usui, T. Miyai, S. Yamagami, and S. Amano, “Tear meniscus evaluation by anterior segment swept-source optical coherence tomography,” Am. J. Ophthalmol. 155(4), 620–624.e2 (2013).
[Crossref]
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]
N. Yokoi, A. J. Bron, J. M. Tiffany, K. Maruyama, A. Komuro, and S. Kinoshita, “Relationship Between Tear Volume and Tear Meniscus Curvature,” JAMA Ophthalmol. 122(9), 1265–1269 (2004).
[Crossref]
H. Oguz, N. Yokoi, and S. Kinoshita, “The height and radius of the tear meniscus and methods for examining these parameters,” Cornea 19(4), 497–500 (2000).
[Crossref]
J. S. Wolffsohn, R. Arita, R. Chalmers, A. Djalilian, M. Dogru, K. Dumbleton, P. K. Gupta, P. Karpecki, S. Lazreg, H. Pult, B. D. Sullivan, A. Tomlinson, L. Tong, E. Villani, K. C. Yoon, L. Jones, and J. P. Craig, “TFOS DEWS II diagnostic methodology report TFOS International Dry Eye WorkShop (DEWS II),” The Ocular Surface 15(3), 539–574 (2017).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
H. H. Chan, Y. Zhao, T. A. Tun, and L. Tong, “Repeatability of tear meniscus evaluation using spectral-domain Cirrusreg HD-OCT and time-domain Visantereg OCT,” Contact Lens and Anterior Eye 38(5), 368–372 (2015).
[Crossref]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015).
S. Zhou, Y. Li, A. T. Lu, P. Liu, M. Tang, S. C. Yiu, and D. Huang, “Reproducibility of tear meniscus measurement by Fourier-domain optical coherence tomography: a pilot study,” Ophthalmic Surg Lasers Imaging 40(5), 442–447 (2009).
[Crossref]