S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of lung cancer using nano-nose-a review,” Open Biomed. Eng. J. 9(1), 228–233 (2015)..
[Crossref]
W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators, B 221, 1062–1068 (2015)..
[Crossref]
L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015)..
[Crossref]
J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014)..
[Crossref]
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
L. Zhang, G. Tian, J. Li, and B. Yu, “Applications of absorption spectroscopy using quantum cascade lasers,” Appl. Spectrosc. 68(10), 1095–1107 (2014)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013)..
[Crossref]
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt. 51(25), 6009–6013 (2012)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
T. Salthammer, S. Mentese, and R. Marutzky, “Formaldehyde in the indoor environment,” Chem. Rev. 110(4), 2536–2572 (2010)..
[Crossref]
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9(10), 8230–8262 (2009)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
Q. Ma, H. Cui, and X. Su, “Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films,” Biosens. Bioelectron. 25(4), 839–844 (2009)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
J. A. German and M. B. Harper, “Environmental control of allergic diseases,” American Family Physician 66(3), 421 (2002).
E. Von Mutius, “Environmental factors influencing the development and progression of pediatric asthma,” J. Allergy Clin. Immunol. 109(6), S525–S532 (2002)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
V. V. Liger, “Optical fringes reduction in ultrasensitive diode laser absorption spectroscopy,” Spectrochim. Acta, Part A 55(10), 2021–2026 (1999)..
[Crossref]
M. Arend, B. Westermann, and N. Risch, “Modern variants of the Mannich reaction,” Angew. Chem., Int. Ed. 37(8), 1044–1070 (1998)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
K. T. Morgan, “A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment,” Toxicol. Pathol. 25(3), 291–305 (1997)..
[Crossref]
S. E. Ebeler, A. J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human,” J. Chromatogr., Biomed. Appl. 702(1-2), 211–215 (1997)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
J. K. McLaughlin, “Formaldehyde and cancer: a critical review,” Int. Arch. Occup. Environ. Health 66(5), 295–301 (1994)..
[Crossref]
V. J. Feron and H. P. Til, “Vrijer Flora de, RA Woutersen, FR Cassee, PJ van Bladeren,” Mutat. Res., Genet. Toxicol. Test. 259(3-4), 363–385 (1991)..
[Crossref]
T. Malaka and A. M. Kodama, “Respiratory health of plywood workers occupationally exposed to formaldehyde,” Arch. Environ. Health 45(5), 288–294 (1990)..
[Crossref]
J. B. McManus and P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29(7), 898–900 (1990)..
[Crossref]
A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Reduction of interference fringes in small multipass absorption cells by pressure modulation,” Appl. Opt. 29(7), 900–902 (1990)..
[Crossref]
B. Mann and M. L. Grayeski, “New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence,” J. Chromatogr. A 386, 149–158 (1987)..
[Crossref]
I. M. Ritchie and R. G. Lehnen, “Formaldehyde-related health complaints of residents living in mobile and conventional homes,” Am. J. Public Health 77(3), 323–328 (1987)..
[Crossref]
A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986)..
[Crossref]
C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2(9), 1464–1470 (1985)..
[Crossref]
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
G. R. Möhlmann, “Formaldehyde detection in air by laser-induced fluorescence,” Appl. Spectrosc. 39(1), 98–101 (1985)..
[Crossref]
J. C. Septon and J. C. Ku, “Workplace air sampling and polarographic determination of formaldehyde,” Am. Ind. Hyg. Assoc. J. 43(11), 845–852 (1982)..
[Crossref]
T. Dumas, “Determination of formaldehyde in air by gas chromatography,” J. Chromatogr. A 247(2), 289–295 (1982)..
[Crossref]
J. M. Lorrain, C. R. Fortune, and B. Dellinger, “Sampling and ion chromatographic determination of formaldehyde and acetaldehyde,” Anal. Chem. 53(8), 1302–1305 (1981)..
[Crossref]
G. Peach, “Theory of the pressure broadening and shift of spectral lines,” Adv. Phys. 30(3), 367–474 (1981)..
[Crossref]
J. R. Braswell, D. R. Spiner, and R. K. Hoffman, “Adsorption of formaldehyde by various surfaces during gaseous decontamination,” Appl. Microbiol. 20(5), 765–769 (1970)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
M. Arend, B. Westermann, and N. Risch, “Modern variants of the Mannich reaction,” Angew. Chem., Int. Ed. 37(8), 1044–1070 (1998)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
J. R. Braswell, D. R. Spiner, and R. K. Hoffman, “Adsorption of formaldehyde by various surfaces during gaseous decontamination,” Appl. Microbiol. 20(5), 765–769 (1970)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
S. E. Ebeler, A. J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human,” J. Chromatogr., Biomed. Appl. 702(1-2), 211–215 (1997)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
Q. Ma, H. Cui, and X. Su, “Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films,” Biosens. Bioelectron. 25(4), 839–844 (2009)..
[Crossref]
J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988)..
[Crossref]
J. M. Lorrain, C. R. Fortune, and B. Dellinger, “Sampling and ion chromatographic determination of formaldehyde and acetaldehyde,” Anal. Chem. 53(8), 1302–1305 (1981)..
[Crossref]
W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 1988).
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
T. Dumas, “Determination of formaldehyde in air by gas chromatography,” J. Chromatogr. A 247(2), 289–295 (1982)..
[Crossref]
S. E. Ebeler, A. J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human,” J. Chromatogr., Biomed. Appl. 702(1-2), 211–215 (1997)..
[Crossref]
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
M. Mangold, B. Tuzson, and L Emmenegger, U.S. Patent No. 9,638,624. Washington, DC: U.S. Patent and Trademark Office (2017).
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of lung cancer using nano-nose-a review,” Open Biomed. Eng. J. 9(1), 228–233 (2015)..
[Crossref]
V. J. Feron and H. P. Til, “Vrijer Flora de, RA Woutersen, FR Cassee, PJ van Bladeren,” Mutat. Res., Genet. Toxicol. Test. 259(3-4), 363–385 (1991)..
[Crossref]
J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
J. M. Lorrain, C. R. Fortune, and B. Dellinger, “Sampling and ion chromatographic determination of formaldehyde and acetaldehyde,” Anal. Chem. 53(8), 1302–1305 (1981)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Reduction of interference fringes in small multipass absorption cells by pressure modulation,” Appl. Opt. 29(7), 900–902 (1990)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
J. A. German and M. B. Harper, “Environmental control of allergic diseases,” American Family Physician 66(3), 421 (2002).
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
B. Mann and M. L. Grayeski, “New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence,” J. Chromatogr. A 386, 149–158 (1987)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
J. A. German and M. B. Harper, “Environmental control of allergic diseases,” American Family Physician 66(3), 421 (2002).
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Reduction of interference fringes in small multipass absorption cells by pressure modulation,” Appl. Opt. 29(7), 900–902 (1990)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
J. R. Braswell, D. R. Spiner, and R. K. Hoffman, “Adsorption of formaldehyde by various surfaces during gaseous decontamination,” Appl. Microbiol. 20(5), 765–769 (1970)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
T. Malaka and A. M. Kodama, “Respiratory health of plywood workers occupationally exposed to formaldehyde,” Arch. Environ. Health 45(5), 288–294 (1990)..
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
H. D. Kronfeldt, “Piezo-enhanced multireflection cells applied for in-situ measurements of trace-gas concentrations,” In Lens and Optical Systems Design (Vol. 1780, p. 17801L) (1993, April). International Society for Optics and Photonics.
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
J. C. Septon and J. C. Ku, “Workplace air sampling and polarographic determination of formaldehyde,” Am. Ind. Hyg. Assoc. J. 43(11), 845–852 (1982)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
I. M. Ritchie and R. G. Lehnen, “Formaldehyde-related health complaints of residents living in mobile and conventional homes,” Am. J. Public Health 77(3), 323–328 (1987)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014)..
[Crossref]
L. Zhang, G. Tian, J. Li, and B. Yu, “Applications of absorption spectroscopy using quantum cascade lasers,” Appl. Spectrosc. 68(10), 1095–1107 (2014)..
[Crossref]
V. V. Liger, “Optical fringes reduction in ultrasensitive diode laser absorption spectroscopy,” Spectrochim. Acta, Part A 55(10), 2021–2026 (1999)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
J. M. Lorrain, C. R. Fortune, and B. Dellinger, “Sampling and ion chromatographic determination of formaldehyde and acetaldehyde,” Anal. Chem. 53(8), 1302–1305 (1981)..
[Crossref]
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators, B 221, 1062–1068 (2015)..
[Crossref]
Q. Ma, H. Cui, and X. Su, “Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films,” Biosens. Bioelectron. 25(4), 839–844 (2009)..
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
T. Malaka and A. M. Kodama, “Respiratory health of plywood workers occupationally exposed to formaldehyde,” Arch. Environ. Health 45(5), 288–294 (1990)..
[Crossref]
B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013)..
[Crossref]
M. Mangold, B. Tuzson, and L Emmenegger, U.S. Patent No. 9,638,624. Washington, DC: U.S. Patent and Trademark Office (2017).
B. Mann and M. L. Grayeski, “New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence,” J. Chromatogr. A 386, 149–158 (1987)..
[Crossref]
T. Salthammer, S. Mentese, and R. Marutzky, “Formaldehyde in the indoor environment,” Chem. Rev. 110(4), 2536–2572 (2010)..
[Crossref]
J. K. McLaughlin, “Formaldehyde and cancer: a critical review,” Int. Arch. Occup. Environ. Health 66(5), 295–301 (1994)..
[Crossref]
J. B. McManus and P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29(7), 898–900 (1990)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
T. Salthammer, S. Mentese, and R. Marutzky, “Formaldehyde in the indoor environment,” Chem. Rev. 110(4), 2536–2572 (2010)..
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
K. T. Morgan, “A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment,” Toxicol. Pathol. 25(3), 291–305 (1997)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014)..
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
G. Peach, “Theory of the pressure broadening and shift of spectral lines,” Adv. Phys. 30(3), 367–474 (1981)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
S. Schilt, F. K. Tittel, and K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, 2006).
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators, B 221, 1062–1068 (2015)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
M. Arend, B. Westermann, and N. Risch, “Modern variants of the Mannich reaction,” Angew. Chem., Int. Ed. 37(8), 1044–1070 (1998)..
[Crossref]
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).
I. M. Ritchie and R. G. Lehnen, “Formaldehyde-related health complaints of residents living in mobile and conventional homes,” Am. J. Public Health 77(3), 323–328 (1987)..
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9(10), 8230–8262 (2009)..
[Crossref]
T. Salthammer, S. Mentese, and R. Marutzky, “Formaldehyde in the indoor environment,” Chem. Rev. 110(4), 2536–2572 (2010)..
[Crossref]
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
S. Schilt, F. K. Tittel, and K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, 2006).
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
J. C. Septon and J. C. Ku, “Workplace air sampling and polarographic determination of formaldehyde,” Am. Ind. Hyg. Assoc. J. 43(11), 845–852 (1982)..
[Crossref]
S. E. Ebeler, A. J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human,” J. Chromatogr., Biomed. Appl. 702(1-2), 211–215 (1997)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004)..
[Crossref]
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
J. R. Braswell, D. R. Spiner, and R. K. Hoffman, “Adsorption of formaldehyde by various surfaces during gaseous decontamination,” Appl. Microbiol. 20(5), 765–769 (1970)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
Q. Ma, H. Cui, and X. Su, “Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films,” Biosens. Bioelectron. 25(4), 839–844 (2009)..
[Crossref]
M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of lung cancer using nano-nose-a review,” Open Biomed. Eng. J. 9(1), 228–233 (2015)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
V. J. Feron and H. P. Til, “Vrijer Flora de, RA Woutersen, FR Cassee, PJ van Bladeren,” Mutat. Res., Genet. Toxicol. Test. 259(3-4), 363–385 (1991)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015)..
[Crossref]
W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators, B 221, 1062–1068 (2015)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004)..
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
S. Schilt, F. K. Tittel, and K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, 2006).
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. Tuzson, M. Mangold, H. Looser, A. Manninen, and L. Emmenegger, “Compact multipass optical cell for laser spectroscopy,” Opt. Lett. 38(3), 257–259 (2013)..
[Crossref]
M. Mangold, B. Tuzson, and L Emmenegger, U.S. Patent No. 9,638,624. Washington, DC: U.S. Patent and Trademark Office (2017).
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).
M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of lung cancer using nano-nose-a review,” Open Biomed. Eng. J. 9(1), 228–233 (2015)..
[Crossref]
E. Von Mutius, “Environmental factors influencing the development and progression of pediatric asthma,” J. Allergy Clin. Immunol. 109(6), S525–S532 (2002)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9(10), 8230–8262 (2009)..
[Crossref]
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
M. Arend, B. Westermann, and N. Risch, “Modern variants of the Mannich reaction,” Angew. Chem., Int. Ed. 37(8), 1044–1070 (1998)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
G. Peach, “Theory of the pressure broadening and shift of spectral lines,” Adv. Phys. 30(3), 367–474 (1981)..
[Crossref]
J. C. Septon and J. C. Ku, “Workplace air sampling and polarographic determination of formaldehyde,” Am. Ind. Hyg. Assoc. J. 43(11), 845–852 (1982)..
[Crossref]
I. M. Ritchie and R. G. Lehnen, “Formaldehyde-related health complaints of residents living in mobile and conventional homes,” Am. J. Public Health 77(3), 323–328 (1987)..
[Crossref]
J. A. German and M. B. Harper, “Environmental control of allergic diseases,” American Family Physician 66(3), 421 (2002).
J. O. Levin, K. Andersson, R. Lindahl, and C. A. Nilsson, “Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2, 4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography,” Anal. Chem. 57(6), 1032–1035 (1985)..
[Crossref]
J. M. Lorrain, C. R. Fortune, and B. Dellinger, “Sampling and ion chromatographic determination of formaldehyde and acetaldehyde,” Anal. Chem. 53(8), 1302–1305 (1981)..
[Crossref]
J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014)..
[Crossref]
M. Arend, B. Westermann, and N. Risch, “Modern variants of the Mannich reaction,” Angew. Chem., Int. Ed. 37(8), 1044–1070 (1998)..
[Crossref]
J. R. Braswell, D. R. Spiner, and R. K. Hoffman, “Adsorption of formaldehyde by various surfaces during gaseous decontamination,” Appl. Microbiol. 20(5), 765–769 (1970)..
[Crossref]
X. Zhu and D. T. Cassidy, “Electronic subtracter for trace-gas detection with InGaAsP diode lasers,” Appl. Opt. 34(36), 8303–8308 (1995)..
[Crossref]
D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883–889 (1965)..
[Crossref]
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, and J. Koeth, “Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm,” Appl. Opt. 51(25), 6009–6013 (2012)..
[Crossref]
D. G. Lancaster, A. Fried, B. Wert, B. Henry, and F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39(24), 4436–4443 (2000)..
[Crossref]
J. A. Silver and A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27(10), 1914–1916 (1988)..
[Crossref]
J. B. McManus and P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29(7), 898–900 (1990)..
[Crossref]
A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Reduction of interference fringes in small multipass absorption cells by pressure modulation,” Appl. Opt. 29(7), 900–902 (1990)..
[Crossref]
D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B 85(2-3), 391–396 (2006)..
[Crossref]
C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 111(4), 603–610 (2013)..
[Crossref]
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013)..
[Crossref]
Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, “Detection of formaldehyde using mid-infrared difference-frequency generation,” Appl. Phys. B: Lasers Opt. 65(6), 771–774 (1997)..
[Crossref]
G. R. Möhlmann, “Formaldehyde detection in air by laser-induced fluorescence,” Appl. Spectrosc. 39(1), 98–101 (1985)..
[Crossref]
J. Chen, S. So, H. Lee, M. P. Fraser, R. F. Curl, T. Harman, and F. K. Tittel, “Atmospheric formaldehyde monitoring in the Greater Houston area in 2002,” Appl. Spectrosc. 58(2), 243–247 (2004)..
[Crossref]
L. Zhang, G. Tian, J. Li, and B. Yu, “Applications of absorption spectroscopy using quantum cascade lasers,” Appl. Spectrosc. 68(10), 1095–1107 (2014)..
[Crossref]
T. Malaka and A. M. Kodama, “Respiratory health of plywood workers occupationally exposed to formaldehyde,” Arch. Environ. Health 45(5), 288–294 (1990)..
[Crossref]
J. R. Hopkins, T. Still, S. Al-Haider, I. R. Fisher, A. C. Lewis, and P. W. Seakins, “A simplified apparatus for ambient formaldehyde detection via GC-pHID,” Atmos. Environ. 37(18), 2557–2565 (2003)..
[Crossref]
M. Cazorla, G. M. Wolfe, S. A. Bailey, A. K. Swanson, H. L. Arkinson, and T. F. Hanisco, “A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere,” Atmos. Meas. Tech. 8(2), 541–552 (2015)..
[Crossref]
B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis 5(18), 2287–2306 (2013)..
[Crossref]
M. Hämmerle, E. A. Hall, N. Cade, and D. Hodgins, “Electrochemical enzyme sensor for formaldehyde operating in the gas phase,” Biosens. Bioelectron. 11(3), 239–246 (1996)..
[Crossref]
Q. Ma, H. Cui, and X. Su, “Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films,” Biosens. Bioelectron. 25(4), 839–844 (2009)..
[Crossref]
T. Salthammer, S. Mentese, and R. Marutzky, “Formaldehyde in the indoor environment,” Chem. Rev. 110(4), 2536–2572 (2010)..
[Crossref]
W. J. Kim, N. Terada, T. Nomura, R. Takahashi, S. D. Lee, J. H. Park, and A. Konno, “Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome,” Clin. Exp. Allergy 32(2), 287–295 (2002)..
[Crossref]
S. Costa, C. Costa, J. Madureira, V. Valdiglesias, A. Teixeira-Gomes, P. G. de Pinho, and J. P. Teixeira, “Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility,” Environ. Res. 179, 108740 (2019)..
[Crossref]
J. R. Hottle, A. J. Huisman, J. P. DiGangi, A. Kammrath, M. M. Galloway, K. L. Coens, and F. N. Keutsch, “A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde,” Environ. Sci. Technol. 43(3), 790–795 (2009)..
[Crossref]
S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, and F. Tittel, “Field intercomparison of a novel optical sensor for formaldehyde quantification,” Geophys. Res. Lett. 27(14), 2093–2096 (2000)..
[Crossref]
J. K. McLaughlin, “Formaldehyde and cancer: a critical review,” Int. Arch. Occup. Environ. Health 66(5), 295–301 (1994)..
[Crossref]
P. Fuchs, C. Loeseken, J. K. Schubert, and W. Miekisch, “Breath gas aldehydes as biomarkers of lung cancer,” Int. J. Cancer 126(11), 24970 (2009).
[Crossref]
A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, “Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas,” Int. J. Mass Spectrom. 265(1), 49–59 (2007)..
[Crossref]
J. Wojtas, F. K. Tittel, T. Stacewicz, Z. Bielecki, R. Lewicki, J. Mikolajczyk, and J. Tarka, “Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis,” Int. J. Thermophys. 35(12), 2215–2225 (2014)..
[Crossref]
E. Von Mutius, “Environmental factors influencing the development and progression of pediatric asthma,” J. Allergy Clin. Immunol. 109(6), S525–S532 (2002)..
[Crossref]
B. Mann and M. L. Grayeski, “New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence,” J. Chromatogr. A 386, 149–158 (1987)..
[Crossref]
T. Dumas, “Determination of formaldehyde in air by gas chromatography,” J. Chromatogr. A 247(2), 289–295 (1982)..
[Crossref]
S. E. Ebeler, A. J. Clifford, and T. Shibamoto, “Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human,” J. Chromatogr., Biomed. Appl. 702(1-2), 211–215 (1997)..
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, and J. Hannigan, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons,” J. Geophys. Res.: Atmos. 108(D4), 8365 (2003).
[Crossref]
B. P. Wert, M. Trainer, A. Fried, T. B. Ryerson, B. Henry, W. Potter, and G. J. Frost, “Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000,” J. Geophys. Res.: Atmos. 108(D3), 2502 (2003).
[Crossref]
L. Lee, H. Park, K. H. Ko, T. S. Kim, and D. Y. Jeong, “Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique,” J. Korean Phys. Soc. 57(2(1)), 364–368 (2010).
[Crossref]
L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)..
[Crossref]
V. J. Feron and H. P. Til, “Vrijer Flora de, RA Woutersen, FR Cassee, PJ van Bladeren,” Mutat. Res., Genet. Toxicol. Test. 259(3-4), 363–385 (1991)..
[Crossref]
M. P. Fernandes, S. Venkatesh, and B. G. Sudarshan, “Early detection of lung cancer using nano-nose-a review,” Open Biomed. Eng. J. 9(1), 228–233 (2015)..
[Crossref]
J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikołajczyk, and M. Nowakowski, “Ultrasensitive laser spectroscopy for breath analysis,” Opto-Electron. Rev. 20(1), 26–39 (2012)..
[Crossref]
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity ring down spectroscopy: detection of trace amounts of substance,” Opto-Electron. Rev. 20(1), 53–60 (2012)..
[Crossref]
A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986)..
[Crossref]
A. O’Keefe and D. A. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988)..
[Crossref]
J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and B. Buszewski, “Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs,” Sens. Actuators, B 202, 615–621 (2014)..
[Crossref]
C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” Sens. Actuators, B 122(2), 503–510 (2007)..
[Crossref]
J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, “Silicon-based micro-gas sensors for detecting formaldehyde,” Sens. Actuators, B 136(2), 399–404 (2009)..
[Crossref]
J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, “An enrichment method to detect low concentration formaldehyde,” Sens. Actuators, B 134(2), 1010–1015 (2008)..
[Crossref]
W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 µm,” Sens. Actuators, B 221, 1062–1068 (2015)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9(10), 8230–8262 (2009)..
[Crossref]
P. R. Chung, C. T. Tzeng, M. T. Ke, and C. Y. Lee, “Formaldehyde gas sensors: a review,” Sensors 13(4), 4468–4484 (2013)..
[Crossref]
A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9(12), 9616–9628 (2009)..
[Crossref]
P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14(4), 6165–6206 (2014)..
[Crossref]
V. V. Liger, “Optical fringes reduction in ultrasensitive diode laser absorption spectroscopy,” Spectrochim. Acta, Part A 55(10), 2021–2026 (1999)..
[Crossref]
K. T. Morgan, “A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment,” Toxicol. Pathol. 25(3), 291–305 (1997)..
[Crossref]
World Health Organization, Concise International Chemical Assessment Document 40: Formaldehyde. (World Health Organization, 2002).
M. S. Zahniser, D. D. Nelson, J. B. McManus, S. C. Herndon, E. C. Wood, and J. H. Shorter, … & S. Park (2009, January).
“Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” In Quantum Sensing and Nanophotonic Devices VI (Vol. 7222, p. 72220H). International Society for Optics and Photonics.
World Health Organization, Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide (World Health Organization, 2006).
S. Schilt, F. K. Tittel, and K. P. Petrov, “Diode laser spectroscopic monitoring of trace gases,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Wiley, 2006).
H. D. Kronfeldt, “Piezo-enhanced multireflection cells applied for in-situ measurements of trace-gas concentrations,” In Lens and Optical Systems Design (Vol. 1780, p. 17801L) (1993, April). International Society for Optics and Photonics.
M. Mangold, B. Tuzson, and L Emmenegger, U.S. Patent No. 9,638,624. Washington, DC: U.S. Patent and Trademark Office (2017).
W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 1988).
K. W. Busch and M. A. Busch, eds., Cavity-ringdown Spectroscopy: An Ultratrace-absorption Measurement Technique (American Chemical Society, 1999).
J. H. Van Helden, R. Peverall, G. A. D. Ritchie, G. Berden, and R. Engeln, Cavity Enhanced Techniques using Continuous Wave Lasers (Wiley-Blackwell, 2009). (pp. 27–56).