M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med. 108, 1–8 (2019).
[Crossref]
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, (Springer International Publishing, 2016), 424–432.
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, “Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map,” Med. Image Anal. 17(8), 907–928 (2013).
[Crossref]
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated Segmentation of Neural Canal Opening and Optic Cup in 3D Spectral Optical Coherence Tomography Volumes of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 51(11), 5708–5717 (2010).
[Crossref]
K. Lee, H. Zhang, A. Wahle, M. D. Abràmoff, and M. Sonka, “Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use,” in VipIMAGE 2017, (Springer International Publishing, 2018), 862–871.
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
F. Milletari, N. Navab, and S.-A. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (2016), pp. 565–571.
Justin Johnson, Alexandre Alahi, and L. Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” arXiv:1603.08155 [cs.CV] (2016).
B. Al-Diri, A. Hunter, and D. Steel, “An Active Contour Model for Segmenting and Measuring Retinal Vessels,” IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009).
[Crossref]
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
N. Georgiev and A. Asenov, “Automatic Segmentation of Lumbar Spine MRI Using Ensemble of 2D Algorithms,” in Computational Methods and Clinical Applications for Spine Imaging, (Springer International Publishing, 2019), 154–162.
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
[Crossref]
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
S. Vaswani, F. Bach, and M. Schmidt, “Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron,” arXiv:1810.07288 [cs.LG] (2018).
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
Y. Liu, M. M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features for Edge Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 5872–5881.
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging,” arXiv:1902.07208 [cs.CV] (2019).
A. Benou, R. Veksler, A. Friedman, and T. Riklin Raviv, “Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences,” Med. Image Anal. 42, 145–159 (2017).
[Crossref]
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and M. D. Bruijne, “Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations,” arXiv:1911.01218 [cs.CV] (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]
W. Zhou and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
C. Bowd, R. N. Weinreb, J. M. Williams, and L. M. Zangwill, “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography,” Arch. Ophthalmol. 118(1), 22–26 (2000).
[Crossref]
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, (Springer International Publishing, 2015), 234–241.
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, (Springer International Publishing, 2016), 424–432.
G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and M. D. Bruijne, “Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations,” arXiv:1911.01218 [cs.CV] (2019).
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
T. Zhou, S. Ruan, and S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion,” Array 3-4, 100004 (2019).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
J. Chang, J. Yu, T. Han, H. Chang, and E. Park, “A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), 2017), 1–4.
J. Chang, J. Yu, T. Han, H. Chang, and E. Park, “A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), 2017), 1–4.
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
E. V. Michal Drozdzal, Gabriel Chartrand, Samuel Kadoury, and Chris Pal, “The Importance of Skip Connections in Biomedical Image Segmentation,” arXiv:1608.04117 [cs.CV] (2016).
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
F. Li, H. Chen, Z. Liu, X.-d. Zhang, M.-s. Jiang, Z.-z. Wu, and K.-q. Zhou, “Deep learning-based automated detection of retinal diseases using optical coherence tomography images,” Biomed. Opt. Express 10(12), 6204–6226 (2019).
[Crossref]
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
Y. Liu, M. M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features for Edge Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 5872–5881.
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
K. X. Cheong, L. W. Lim, K. Z. Li, and C. S. Tan, “A novel and faster method of manual grading to measure choroidal thickness using optical coherence tomography,” Eye 32(2), 433–438 (2018).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
J. Chhablani, T. Krishnan, V. Sethi, and I. Kozak, “Artifacts in optical coherence tomography,” Saudi. J. Ophthalmol. 28(2), 81–87 (2014).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, (Springer International Publishing, 2016), 424–432.
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
S. L. Mansberger, S. A. Menda, B. A. Fortune, S. K. Gardiner, and S. Demirel, “Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma,” Am. J. Ophthalmol. 174, 1–8 (2017).
[Crossref]
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
J. B. Diederik and P. Kingma, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs.LG] (2014).
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image analysis,” Ophthalmic Surg. Lasers Imaging 44(2), 168–175 (2013).
[Crossref]
G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and M. D. Bruijne, “Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations,” arXiv:1911.01218 [cs.CV] (2019).
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Visual Sci. 52(10), 7738–7748 (2011).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med. 108, 1–8 (2019).
[Crossref]
L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref]
H. Roth, L. Lu, A. Farag, A. Sohn, and R. Summers, Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation (2016).
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
Justin Johnson, Alexandre Alahi, and L. Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” arXiv:1603.08155 [cs.CV] (2016).
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, (Springer International Publishing, 2015), 234–241.
S. L. Mansberger, S. A. Menda, B. A. Fortune, S. K. Gardiner, and S. Demirel, “Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma,” Am. J. Ophthalmol. 174, 1–8 (2017).
[Crossref]
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
A. Benou, R. Veksler, A. Friedman, and T. Riklin Raviv, “Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences,” Med. Image Anal. 42, 145–159 (2017).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” arXiv:1811.03378 [cs.LG] (2018).
S. L. Mansberger, S. A. Menda, B. A. Fortune, S. K. Gardiner, and S. Demirel, “Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma,” Am. J. Ophthalmol. 174, 1–8 (2017).
[Crossref]
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated Segmentation of Neural Canal Opening and Optic Cup in 3D Spectral Optical Coherence Tomography Volumes of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 51(11), 5708–5717 (2010).
[Crossref]
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
N. Georgiev and A. Asenov, “Automatic Segmentation of Lumbar Spine MRI Using Ensemble of 2D Algorithms,” in Computational Methods and Clinical Applications for Spine Imaging, (Springer International Publishing, 2019), 154–162.
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
S. H. Lee, T. W. Kim, E. J. Lee, M. J. Girard, and J. M. Mari, “Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma,” Invest. Ophthalmol. Visual Sci. 58(2), 755–762 (2017).
[Crossref]
M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Visual Sci. 52(10), 7738–7748 (2011).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. A. Girard, “Enhancement of Lamina Cribrosa Visibility in Optical Coherence Tomography Images Using Adaptive Compensation,” Invest. Ophthalmol. Visual Sci. 54(3), 2238–2247 (2013).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
J. Chang, J. Yu, T. Han, H. Chang, and E. Park, “A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), 2017), 1–4.
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
Y. Sun, T. Zhang, Y. Zhao, and Y. He, “3D Automatic Segmentation Method for Retinal Optical Coherence Tomography Volume Data Using Boundary Surface Enhancement,” arXiv:1508.00966 [cs.CV] (2015).
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
J. M. Heltzer, “Coexisting glaucoma and cataract,” Ophthalmology 111(2), 408–409 (2004).
[Crossref]
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and M. D. Bruijne, “Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations,” arXiv:1911.01218 [cs.CV] (2019).
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
Y. Liu, M. M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features for Edge Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 5872–5881.
Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated Segmentation of Neural Canal Opening and Optic Cup in 3D Spectral Optical Coherence Tomography Volumes of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 51(11), 5708–5717 (2010).
[Crossref]
W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image analysis,” Ophthalmic Surg. Lasers Imaging 44(2), 168–175 (2013).
[Crossref]
Z. Lin, S. Huang, B. Xie, and Y. Zhong, “Peripapillary Choroidal Thickness and Open-Angle Glaucoma: A Meta-Analysis,” J Ophthalmol 2016, 5484568 (2016).
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
B. Al-Diri, A. Hunter, and D. Steel, “An Active Contour Model for Segmenting and Measuring Retinal Vessels,” IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009).
[Crossref]
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” arXiv:1811.03378 [cs.LG] (2018).
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
Justin Johnson, Alexandre Alahi, and L. Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution,” arXiv:1603.08155 [cs.CV] (2016).
L. Xu, Y. Wang, S. Wang, Y. Wang, and J. B. Jonas, “High Myopia and Glaucoma Susceptibility: The Beijing Eye Study,” Ophthalmology 114(2), 216–220 (2007).
[Crossref]
J. B. Jonas, “Clinical implications of peripapillary atrophy in glaucoma,” Curr. Opin. Ophthalmol. 16(2), 84–88 (2005).
[Crossref]
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
E. V. Michal Drozdzal, Gabriel Chartrand, Samuel Kadoury, and Chris Pal, “The Importance of Skip Connections in Biomedical Image Segmentation,” arXiv:1608.04117 [cs.CV] (2016).
R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, “Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map,” Med. Image Anal. 17(8), 907–928 (2013).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
X. Z. Kaiming He, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs.CV] (2015).
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
G. Bortsova, F. Dubost, L. Hogeweg, I. Katramados, and M. D. Bruijne, “Semi-Supervised Medical Image Segmentation via Learning Consistency under Transformations,” arXiv:1911.01218 [cs.CV] (2019).
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
Haofu Liao, Wei-An Lin, Jianbo Yuan, S. Kevin Zhou, and J. Luo, “Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction,” arXiv:1906.01806 [eess.IV] (2019).
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big. Data 3(1), 9 (2016).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
B. S. Min, D. K. Lim, S. J. Kim, and J. H. Lee, “A Novel Method of Determining Parameters of CLAHE Based on Image Entropy,” IJSEIA 7(5), 113–120 (2013).
[Crossref]
S. H. Lee, T. W. Kim, E. J. Lee, M. J. Girard, and J. M. Mari, “Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma,” Invest. Ophthalmol. Visual Sci. 58(2), 755–762 (2017).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
J. B. Diederik and P. Kingma, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs.LG] (2014).
M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging,” arXiv:1902.07208 [cs.CV] (2019).
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated Convolutions,” arXiv:1511.07122 [cs.CV] (2015).
J. Chhablani, T. Krishnan, V. Sethi, and I. Kozak, “Artifacts in optical coherence tomography,” Saudi. J. Ophthalmol. 28(2), 81–87 (2014).
[Crossref]
D. Müller and F. Kramer, “MIScnn: A Framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning,” arXiv:1910.09308 [eess.IV] (2019).
J. Chhablani, T. Krishnan, V. Sethi, and I. Kozak, “Artifacts in optical coherence tomography,” Saudi. J. Ophthalmol. 28(2), 81–87 (2014).
[Crossref]
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated Segmentation of Neural Canal Opening and Optic Cup in 3D Spectral Optical Coherence Tomography Volumes of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 51(11), 5708–5717 (2010).
[Crossref]
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. H. Lee, T. W. Kim, E. J. Lee, M. J. Girard, and J. M. Mari, “Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma,” Invest. Ophthalmol. Visual Sci. 58(2), 755–762 (2017).
[Crossref]
B. S. Min, D. K. Lim, S. J. Kim, and J. H. Lee, “A Novel Method of Determining Parameters of CLAHE Based on Image Entropy,” IJSEIA 7(5), 113–120 (2013).
[Crossref]
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated Segmentation of Neural Canal Opening and Optic Cup in 3D Spectral Optical Coherence Tomography Volumes of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 51(11), 5708–5717 (2010).
[Crossref]
K. Lee, H. Zhang, A. Wahle, M. D. Abràmoff, and M. Sonka, “Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use,” in VipIMAGE 2017, (Springer International Publishing, 2018), 862–871.
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
S. H. Lee, T. W. Kim, E. J. Lee, M. J. Girard, and J. M. Mari, “Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma,” Invest. Ophthalmol. Visual Sci. 58(2), 755–762 (2017).
[Crossref]
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
K. X. Cheong, L. W. Lim, K. Z. Li, and C. S. Tan, “A novel and faster method of manual grading to measure choroidal thickness using optical coherence tomography,” Eye 32(2), 433–438 (2018).
[Crossref]
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
Haofu Liao, Wei-An Lin, Jianbo Yuan, S. Kevin Zhou, and J. Luo, “Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction,” arXiv:1906.01806 [eess.IV] (2019).
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, (Springer International Publishing, 2016), 424–432.
B. S. Min, D. K. Lim, S. J. Kim, and J. H. Lee, “A Novel Method of Determining Parameters of CLAHE Based on Image Entropy,” IJSEIA 7(5), 113–120 (2013).
[Crossref]
K. X. Cheong, L. W. Lim, K. Z. Li, and C. S. Tan, “A novel and faster method of manual grading to measure choroidal thickness using optical coherence tomography,” Eye 32(2), 433–438 (2018).
[Crossref]
Haofu Liao, Wei-An Lin, Jianbo Yuan, S. Kevin Zhou, and J. Luo, “Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction,” arXiv:1906.01806 [eess.IV] (2019).
Z. Lin, S. Huang, B. Xie, and Y. Zhong, “Peripapillary Choroidal Thickness and Open-Angle Glaucoma: A Meta-Analysis,” J Ophthalmol 2016, 5484568 (2016).
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
Y. Liu, M. M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features for Edge Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 5872–5881.
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
H. Roth, L. Lu, A. Farag, A. Sohn, and R. Summers, Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation (2016).
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
Haofu Liao, Wei-An Lin, Jianbo Yuan, S. Kevin Zhou, and J. Luo, “Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction,” arXiv:1906.01806 [eess.IV] (2019).
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
Q. Lyu, H. Shan, and G. Wang, MRI Super-Resolution with Ensemble Learning and Complementary Priors (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
S. L. Mansberger, S. A. Menda, B. A. Fortune, S. K. Gardiner, and S. Demirel, “Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma,” Am. J. Ophthalmol. 174, 1–8 (2017).
[Crossref]
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
M. A. Mayer, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients,” Biomed. Opt. Express 1(5), 1358–1383 (2010).
[Crossref]
S. H. Lee, T. W. Kim, E. J. Lee, M. J. Girard, and J. M. Mari, “Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma,” Invest. Ophthalmol. Visual Sci. 58(2), 755–762 (2017).
[Crossref]
J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. A. Girard, “Enhancement of Lamina Cribrosa Visibility in Optical Coherence Tomography Images Using Adaptive Compensation,” Invest. Ophthalmol. Visual Sci. 54(3), 2238–2247 (2013).
[Crossref]
M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Visual Sci. 52(10), 7738–7748 (2011).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” arXiv:1811.03378 [cs.LG] (2018).
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
S. L. Mansberger, S. A. Menda, B. A. Fortune, S. K. Gardiner, and S. Demirel, “Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma,” Am. J. Ophthalmol. 174, 1–8 (2017).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
E. V. Michal Drozdzal, Gabriel Chartrand, Samuel Kadoury, and Chris Pal, “The Importance of Skip Connections in Biomedical Image Segmentation,” arXiv:1608.04117 [cs.CV] (2016).
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
F. Milletari, N. Navab, and S.-A. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (2016), pp. 565–571.
B. S. Min, D. K. Lim, S. J. Kim, and J. H. Lee, “A Novel Method of Determining Parameters of CLAHE Based on Image Entropy,” IJSEIA 7(5), 113–120 (2013).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med. 108, 1–8 (2019).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
D. Müller and F. Kramer, “MIScnn: A Framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning,” arXiv:1910.09308 [eess.IV] (2019).
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, “ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks,” Biomed. Opt. Express 8(8), 3627–3642 (2017).
[Crossref]
F. Milletari, N. Navab, and S.-A. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (2016), pp. 565–571.
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” arXiv:1811.03378 [cs.LG] (2018).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]
E. V. Michal Drozdzal, Gabriel Chartrand, Samuel Kadoury, and Chris Pal, “The Importance of Skip Connections in Biomedical Image Segmentation,” arXiv:1608.04117 [cs.CV] (2016).
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image analysis,” Ophthalmic Surg. Lasers Imaging 44(2), 168–175 (2013).
[Crossref]
J. Chang, J. Yu, T. Han, H. Chang, and E. Park, “A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), 2017), 1–4.
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. A. Girard, “Enhancement of Lamina Cribrosa Visibility in Optical Coherence Tomography Images Using Adaptive Compensation,” Invest. Ophthalmol. Visual Sci. 54(3), 2238–2247 (2013).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med. 108, 1–8 (2019).
[Crossref]
R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, “Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map,” Med. Image Anal. 17(8), 907–928 (2013).
[Crossref]
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging,” arXiv:1902.07208 [cs.CV] (2019).
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
R. A. Alshareef, S. Dumpala, S. Rapole, M. Januwada, A. Goud, H. K. Peguda, and J. Chhablani, “Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT,” PLoS One 11(5), e0155319 (2016).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
X. Z. Kaiming He, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs.CV] (2015).
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
A. Benou, R. Veksler, A. Friedman, and T. Riklin Raviv, “Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences,” Med. Image Anal. 42, 145–159 (2017).
[Crossref]
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev. 33(1-2), 1–39 (2010).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, (Springer International Publishing, 2016), 424–432.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, (Springer International Publishing, 2015), 234–241.
H. Roth, L. Lu, A. Farag, A. Sohn, and R. Summers, Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation (2016).
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
T. Zhou, S. Ruan, and S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion,” Array 3-4, 100004 (2019).
[Crossref]
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
N. Eladawi, M. Elmogy, M. Ghazal, L. Fraiwan, A. Aboelfetouh, A. Riad, H. Sandhu, R. Keynton, and A. El-Baz, “Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019), 1390–1394.
D. Lu, M. Heisler, S. Lee, G. W. Ding, E. Navajas, M. V. Sarunic, and M. F. Beg, “Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network,” Med. Image Anal. 54, 100–110 (2019).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
S. Vaswani, F. Bach, and M. Schmidt, “Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron,” arXiv:1810.07288 [cs.LG] (2018).
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
J. M. D. Gmeiner, W. A. Schrems, C. Y. Mardin, R. Laemmer, F. E. Kruse, and L. M. Schrems-Hoesl, “Comparison of Bruch's Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment,” Invest. Ophthalmol. Visual Sci. 57(9), OCT575–OCT584 (2016).
[Crossref]
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
J. S. Schuman, “Spectral domain optical coherence tomography for glaucoma (an AOS thesis),” Trans Am Ophthalmol Soc 106, 426–458 (2008).
J. Chhablani, T. Krishnan, V. Sethi, and I. Kozak, “Artifacts in optical coherence tomography,” Saudi. J. Ophthalmol. 28(2), 81–87 (2014).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
Q. Lyu, H. Shan, and G. Wang, MRI Super-Resolution with Ensemble Learning and Complementary Priors (2019).
F. A. Almobarak, N. O’Leary, A. S. C. Reis, G. P. Sharpe, D. M. Hutchison, M. T. Nicolela, and B. C. Chauhan, “Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 55(2), 1161–1168 (2014).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in 3rd International Conference on Learning Representations (ICLR 2015), (San Diego, CA, USA, 2015).
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker, “Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, (Springer International Publishing, 2018), 450–462.
J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009), 248–255.
H. Roth, L. Lu, A. Farag, A. Sohn, and R. Summers, Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation (2016).
M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, and O.-Y. Song, “Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 19(11), 2645 (2019).
[Crossref]
R. Kafieh, H. Rabbani, M. D. Abramoff, and M. Sonka, “Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map,” Med. Image Anal. 17(8), 907–928 (2013).
[Crossref]
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
K. Lee, H. Zhang, A. Wahle, M. D. Abràmoff, and M. Sonka, “Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use,” in VipIMAGE 2017, (Springer International Publishing, 2018), 862–871.
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
B. Al-Diri, A. Hunter, and D. Steel, “An Active Contour Model for Segmenting and Measuring Retinal Vessels,” IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. A. Girard, “Enhancement of Lamina Cribrosa Visibility in Optical Coherence Tomography Images Using Adaptive Compensation,” Invest. Ophthalmol. Visual Sci. 54(3), 2238–2247 (2013).
[Crossref]
M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Visual Sci. 52(10), 7738–7748 (2011).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
H. Roth, L. Lu, A. Farag, A. Sohn, and R. Summers, Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation (2016).
X. Z. Kaiming He, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs.CV] (2015).
Y. Sun, T. Zhang, Y. Zhao, and Y. He, “3D Automatic Segmentation Method for Retinal Optical Coherence Tomography Volume Data Using Boundary Surface Enhancement,” arXiv:1508.00966 [cs.CV] (2015).
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res. 15, 1929–1958 (2014).
J. Fujimoto and E. Swanson, “The Development, Commercialization, and Impact of Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
[Crossref]
T. C. Chen, A. Hoguet, A. K. Junk, K. Nouri-Mahdavi, S. Radhakrishnan, H. L. Takusagawa, and P. P. Chen, “Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology,” Ophthalmology 125(11), 1817–1827 (2018).
[Crossref]
K. X. Cheong, L. W. Lim, K. Z. Li, and C. S. Tan, “A novel and faster method of manual grading to measure choroidal thickness using optical coherence tomography,” Eye 32(2), 433–438 (2018).
[Crossref]
W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image analysis,” Ophthalmic Surg. Lasers Imaging 44(2), 168–175 (2013).
[Crossref]
S. C. Park, J. Brumm, R. L. Furlanetto, C. Netto, Y. Liu, C. Tello, J. M. Liebmann, and R. Ritch, “Lamina cribrosa depth in different stages of glaucoma,” Invest. Ophthalmol. Visual Sci. 56(3), 2059–2064 (2015).
[Crossref]
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
S. K. Devalla, K. S. Chin, J.-M. Mari, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci. 59(1), 63–74 (2018).
[Crossref]
J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express 4(3), 397–411 (2013).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
S. Vaswani, F. Bach, and M. Schmidt, “Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron,” arXiv:1810.07288 [cs.LG] (2018).
A. Benou, R. Veksler, A. Friedman, and T. Riklin Raviv, “Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences,” Med. Image Anal. 42, 145–159 (2017).
[Crossref]
F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. J. P. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomed. Opt. Express 8(7), 3292–3316 (2017).
[Crossref]
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).
[Crossref]
X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels, T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam, M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane, and A. K. Denniston, “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Glob Health 1(6), e271–e297 (2019).
[Crossref]
K. Lee, H. Zhang, A. Wahle, M. D. Abràmoff, and M. Sonka, “Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use,” in VipIMAGE 2017, (Springer International Publishing, 2018), 862–871.
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref]
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big. Data 3(1), 9 (2016).
[Crossref]
Q. Lyu, H. Shan, and G. Wang, MRI Super-Resolution with Ensemble Learning and Complementary Priors (2019).
Y. Liu, M. M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer Convolutional Features for Edge Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017), 5872–5881.
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
L. Xu, Y. Wang, S. Wang, Y. Wang, and J. B. Jonas, “High Myopia and Glaucoma Susceptibility: The Beijing Eye Study,” Ophthalmology 114(2), 216–220 (2007).
[Crossref]
S. K. Devalla, G. Subramanian, T. H. Pham, X. Wang, S. Perera, T. A. Tun, T. Aung, L. Schmetterer, A. H. Thiéry, and M. J. A. Girard, “A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head,” Sci. Rep. 9(1), 14454 (2019).
[Crossref]
H. Cheong, S. K. Devalla, T. H. Pham, Z. Liang, T. A. Tun, X. Wang, S. Perera, L. SchmeŠerer, A. Tin, C. Boote, A. H. Thiery, and M. J. A. Girard, “DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images,” arXiv:1910.02844v1 [eess.IV] (2019).
L. Xu, Y. Wang, S. Wang, Y. Wang, and J. B. Jonas, “High Myopia and Glaucoma Susceptibility: The Beijing Eye Study,” Ophthalmology 114(2), 216–220 (2007).
[Crossref]
L. Xu, Y. Wang, S. Wang, Y. Wang, and J. B. Jonas, “High Myopia and Glaucoma Susceptibility: The Beijing Eye Study,” Ophthalmology 114(2), 216–220 (2007).
[Crossref]
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
C. Bowd, R. N. Weinreb, J. M. Williams, and L. M. Zangwill, “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography,” Arch. Ophthalmol. 118(1), 22–26 (2000).
[Crossref]
K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big. Data 3(1), 9 (2016).
[Crossref]
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
C. Bowd, R. N. Weinreb, J. M. Williams, and L. M. Zangwill, “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography,” Arch. Ophthalmol. 118(1), 22–26 (2000).
[Crossref]
A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]
S. Maetschke, B. Antony, H. Ishikawa, G. Wollstein, J. Schuman, and R. Garnavi, “A feature agnostic approach for glaucoma detection in OCT volumes,” PLoS One 14(7), e0219126 (2019).
[Crossref]
K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa, G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography image enhancement via deep learning,” Biomed. Opt. Express 9(12), 6205–6221 (2018).
[Crossref]
H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode,” Invest. Ophthalmol. Visual Sci. 50(3), 1344–1349 (2009).
[Crossref]
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
W. Wu, O. Tan, R. R. Pappuru, H. Duan, and D. Huang, “Assessment of frame-averaging algorithms in OCT image analysis,” Ophthalmic Surg. Lasers Imaging 44(2), 168–175 (2013).
[Crossref]
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
C. M. Deniz, S. Xiang, R. S. Hallyburton, A. Welbeck, J. S. Babb, S. Honig, K. Cho, and G. Chang, “Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks,” Sci. Rep. 8(1), 16485 (2018).
[Crossref]
Z. Lin, S. Huang, B. Xie, and Y. Zhong, “Peripapillary Choroidal Thickness and Open-Angle Glaucoma: A Meta-Analysis,” J Ophthalmol 2016, 5484568 (2016).
L. Xu, Y. Wang, S. Wang, Y. Wang, and J. B. Jonas, “High Myopia and Glaucoma Susceptibility: The Beijing Eye Study,” Ophthalmology 114(2), 216–220 (2007).
[Crossref]
Y. Huang, Q. Dou, Z.-X. Wang, L.-Z. Liu, Y. Jin, L. Chaofeng, L. Wang, H. Chen, and R.-H. Xu, 3D RoI-aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation (2019).
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Konstantin Nikolaou, Sergios Gatidis, and B. Yang, “MedGAN: Medical Image Translation using GANs,” arXiv:1806.06397 [cs.CV] (2018).
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
A. Yasin Alibhai, C. Or, and A. J. Witkin, “Swept Source Optical Coherence Tomography: a Review,” Curr. Ophthalmol. Rep. 6(1), 7–16 (2018).
[Crossref]
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated Convolutions,” arXiv:1511.07122 [cs.CV] (2015).
J. Chang, J. Yu, T. Han, H. Chang, and E. Park, “A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer,” in 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), 2017), 1–4.
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P. A. Heng, “3D deeply supervised network for automated segmentation of volumetric medical images,” Med. Image Anal. 41, 40–54 (2017).
[Crossref]
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
Haofu Liao, Wei-An Lin, Jianbo Yuan, S. Kevin Zhou, and J. Luo, “Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction,” arXiv:1906.01806 [eess.IV] (2019).
E. Noury, S. Sudhakaran, R. Chang, A. Ran, C. Cheung, S. Thapa, H. Rao, S. Dasari, M. Riyazuddin, S. Nagaraj, and R. Zadeh, Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans (2019).
A. Miki, F. A. Medeiros, R. N. Weinreb, S. Jain, F. He, L. Sharpsten, N. Khachatryan, N. Hammel, J. M. Liebmann, C. A. Girkin, P. A. Sample, and L. M. Zangwill, “Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes,” Ophthalmology 121(7), 1350–1358 (2014).
[Crossref]
C. Bowd, R. N. Weinreb, J. M. Williams, and L. M. Zangwill, “The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography,” Arch. Ophthalmol. 118(1), 22–26 (2000).
[Crossref]
A. Hosny, C. Parmar, T. P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar, J. Bussink, R. J. Gillies, R. H. Mak, and H. J. W. L. Aerts, “Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study,” PLoS Med. 15(11), e1002711 (2018).
[Crossref]
M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging,” arXiv:1902.07208 [cs.CV] (2019).
K. Lee, H. Zhang, A. Wahle, M. D. Abràmoff, and M. Sonka, “Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use,” in VipIMAGE 2017, (Springer International Publishing, 2018), 862–871.
S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, T. Aung, A. H. Thiéry, and M. J. A. Girard, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomed. Opt. Express 9(7), 3244–3265 (2018).
[Crossref]
L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abramoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Visual Sci. 53(12), 7510–7519 (2012).
[Crossref]
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
Y. Sun, T. Zhang, Y. Zhao, and Y. He, “3D Automatic Segmentation Method for Retinal Optical Coherence Tomography Volume Data Using Boundary Surface Enhancement,” arXiv:1508.00966 [cs.CV] (2015).
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
S. Niu, Q. Chen, L. de Sisternes, D. L. Rubin, W. Zhang, and Q. Liu, “Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint,” Comput. Biol. Med. 54, 116–128 (2014).
[Crossref]
A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med. 108, 1–8 (2019).
[Crossref]
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
Y. Sun, T. Zhang, Y. Zhao, and Y. He, “3D Automatic Segmentation Method for Retinal Optical Coherence Tomography Volume Data Using Boundary Surface Enhancement,” arXiv:1508.00966 [cs.CV] (2015).
X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing 237, 332–341 (2017).
[Crossref]
T. H. Pham, S. K. Devalla, A. Ang, S. Zhi Da, A. H. Thiery, C. Boote, C.-Y. Cheng, V. Koh, and M. J. A. Girard, “Deep Learning Algorithms to Isolate and Quantify the Structures of the Anterior Segment in Optical Coherence Tomography Images,” arXiv:1909.00331 [eess.IV] (2019).
Z. Lin, S. Huang, B. Xie, and Y. Zhong, “Peripapillary Choroidal Thickness and Open-Angle Glaucoma: A Meta-Analysis,” J Ophthalmol 2016, 5484568 (2016).
M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and Y.-J. Wan, “Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images,” Int. J. Ophthalmol 12, 1012–1020 (2019).
T. Zhou, S. Ruan, and S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion,” Array 3-4, 100004 (2019).
[Crossref]
W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]
W. Zhou and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).
[Crossref]
H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda, M. Fujiwara, K. Misawa, and K. Mori, “An application of cascaded 3D fully convolutional networks for medical image segmentation,” Comput. Med. Imag. Grap. 66, 90–99 (2018).
[Crossref]
C. Wang, Y. Wang, D. Kaba, H. Zhu, Y. Lv, Z. Wang, X. Liu, and Y. Li, “Segmentation of Intra-retinal Layers in 3D Optic Nerve Head Images,” in Image and Graphics, (Springer International Publishing, 2015), 321–332.
S. Feng, W. Zhu, H. Zhao, F. Shi, D. Xiang, and X. Chen, VinceptionC3D: a 3D convolutional neural network for retinal OCT image classification, SPIE Medical Imaging (SPIE, 2019), Vol. 10949.
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in 3rd International Conference on Learning Representations (ICLR 2015), (San Diego, CA, USA, 2015).
S. M. P. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Gr. Image Process 39(3), 355–368 (1987).
[Crossref]