J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]
P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]
Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]
M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]
A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]
N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]
N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]
A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]
C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]
G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]
D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]
T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]
A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]
N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]
M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]
N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]
A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]
A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]
M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]
G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]
N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]
V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]
A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]
A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]
D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]
D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]
T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]
T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]
R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref]
N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]
N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]
N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]
V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]
R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]
L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]
M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]
C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]
T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]
M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]
E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]
S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]
P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]
S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]
S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]
M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]
J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]
D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]
N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]
J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]
D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]
K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]
K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]
D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]
K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]
E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]
Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]
V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]
G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]
A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]
P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]
P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]
L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]
I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]
E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]
C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]
G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]
A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]
R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]
A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]
S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]
A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]
I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]
A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]
V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]
H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]
T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]
D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]
T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]
D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]
D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]
F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]
L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]
N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]
E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]
S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]
A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]
A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]
C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]
M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]
M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]