M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]
M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]
A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]
V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]
H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]
V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]
B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]
V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]
A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]
I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]
H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]
J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]
T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]
A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]
M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]
M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]
M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]
B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]
A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]
V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]
M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]
M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]
M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]
S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]
A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]
A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]
A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]
T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.
K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]
A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]
S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]
J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]
J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]
Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]
H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]
S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]
L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]
G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]
M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]
H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]
L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]
H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]