Abstract

A major obstacle in the monitoring and treatment of neurological diseases is the blood brain barrier (BBB), a semipermeable barrier that prevents the delivery of many therapeutics and imaging contrast agents to the brain. In this work, we explored the possibility of laser-activated perfluorocarbon nanodroplets (PFCnDs) to open the BBB and deliver agents to the brain tissue. Specifically, near infrared (NIR) dye-loaded PFCnDs comprised of a perfluorocarbon (PFC) core with a boiling point above physiological temperature were repeatedly vaporized and recondensed from liquid droplet to gas bubble under pulsed laser excitation. As a result, this pulse-to-pulse repeated behavior enabled the recurring interaction of PFCnDs with the endothelial lining of the BBB, allowing for a BBB opening and extravasation of dye into the brain tissue. The blood brain barrier opening and delivery of agents to tissue was confirmed on the macro and the molecular level by evaluating Evans Blue staining, ultrasound-guided photoacoustic (USPA) imaging, and histological tissue analysis. The demonstrated PFCnD-assisted pulsed laser method for BBB opening, therefore, represents a tool that has the potential to enable non-invasive, cost-effective, and efficient image-guided delivery of contrast and therapeutic agents to the brain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window

Chao Zhang, Wei Feng, Elena Vodovozova, Daria Tretiakova, Ivan Boldyrevd, Yusha Li, Jurgen Kürths, Tingting Yu, Oxana Semyachkina-Glushkovskaya, and Dan Zhu
Biomed. Opt. Express 9(10) 4850-4862 (2018)

Photodynamic opening of blood-brain barrier

Oxana Semyachkina-Glushkovskaya, Jürgen Kurths, Ekaterina Borisova, Sergei Sokolovski, Vanya Mantareva, Ivan Angelov, Alexander Shirokov, Nikita Navolokin, Natalia Shushunova, Alexander Khorovodov, Maria Ulanova, Madina Sagatova, Ilana Agranivich, Olga Sindeeva, Artem Gekalyuk, Anastasiya Bodrova, and Edik Rafailov
Biomed. Opt. Express 8(11) 5040-5048 (2017)

Assessment of temporary cerebral effects induced by focused ultrasound with optical coherence tomography angiography

Meng-Tsan Tsai, Jia-Wei Zhang, Kuo-Chen Wei, Chih-Kuang Yeh, and Hao-Li Liu
Biomed. Opt. Express 9(2) 507-517 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
    [Crossref] [PubMed]
  2. M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
    [Crossref] [PubMed]
  3. N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
    [Crossref] [PubMed]
  4. T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
    [Crossref] [PubMed]
  5. K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
    [PubMed]
  6. N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
    [Crossref] [PubMed]
  7. J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
    [Crossref] [PubMed]
  8. Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
    [Crossref] [PubMed]
  9. A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
    [Crossref] [PubMed]
  10. N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
    [Crossref]
  11. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
    [Crossref] [PubMed]
  12. P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
    [Crossref] [PubMed]
  13. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
    [Crossref] [PubMed]
  14. C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
    [Crossref] [PubMed]
  15. S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
    [Crossref] [PubMed]
  16. N. Rapoport, “Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
    [Crossref] [PubMed]
  17. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
    [Crossref] [PubMed]
  18. D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
    [Crossref] [PubMed]
  19. G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
    [Crossref] [PubMed]
  20. C. Y. Lin and W. G. Pitt, “Acoustic droplet vaporization in biology and medicine,” BioMed Res. Int. 2013, 404361 (2013).
    [Crossref] [PubMed]
  21. A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
    [Crossref] [PubMed]
  22. H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
    [Crossref] [PubMed]
  23. T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
    [Crossref] [PubMed]
  24. F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
    [Crossref] [PubMed]
  25. N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
    [Crossref] [PubMed]
  26. J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
    [Crossref] [PubMed]
  27. Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
    [Crossref] [PubMed]
  28. K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
    [Crossref] [PubMed]
  29. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
    [Crossref] [PubMed]
  30. D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
    [Crossref] [PubMed]
  31. A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
    [Crossref] [PubMed]
  32. P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
    [Crossref] [PubMed]
  33. M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
    [Crossref] [PubMed]
  34. A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
    [Crossref] [PubMed]
  35. H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
    [Crossref] [PubMed]

2018 (2)

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

2017 (6)

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

2016 (5)

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

N. Rapoport, “Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

2015 (4)

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
[Crossref] [PubMed]

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

2014 (3)

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

2013 (2)

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

C. Y. Lin and W. G. Pitt, “Acoustic droplet vaporization in biology and medicine,” BioMed Res. Int. 2013, 404361 (2013).
[Crossref] [PubMed]

2012 (2)

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

2011 (2)

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

2010 (1)

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

2008 (2)

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

2007 (2)

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
[Crossref] [PubMed]

2006 (1)

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

2004 (1)

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

2003 (1)

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

1999 (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Akens, M. K.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Alexander, P. M.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Alkins, R.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Anzai, Y.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Arena, C. B.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Arvanitis, C. D.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Aryal, M.

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Aubert, I.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Azad, T. D.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Baseri, B.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Beccaria, K.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Bethune, A.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Borden, M. A.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Brayman, A. A.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Burgess, A.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Burns, P. N.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Canney, M.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Capelle, L.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Carpentier, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Carrasco-Teja, M.

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Chapelon, J. Y.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Charoenphol, P.

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Chen, C. C.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Chen, Y. S.

Choi, J. J.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Chopra, R.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Connolly, I. D.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Cornu, P.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Cross, D. J.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Crum, L. A.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Dayton, P. A.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

Delattre, J. Y.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Do Rschel, K.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Dumani, D. S.

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Ellens, N.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Emelianov, S.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

Eniola-Adefeso, O.

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Feshitan, J. A.

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Finkelstein, J.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Fish, M. B.

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Fix, S. M.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Foust, K. D.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Fu, W.-M.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Gervay-Hague, J.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Go, J. G.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Gorelikov, I.

Grant, G. A.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Hallam, K. A.

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Hannah, A.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Hannah, A. S.

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y. S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

Hawryluk, G. W.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Hoang-Xuan, K.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Homan, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Horodyckid, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Huang, Y.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Hwang, J. H.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Hynynen, K.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

Idbaih, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Ironside, S.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Jolesz, F.

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

Jolesz, F. A.

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

Kang, K.-H.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Karachi, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Kaspar, B. K.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Kobus, T.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Kolios, M.

Konofagou, E. E.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Lafon, C.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Leclercq, D.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Lin, C. Y.

C. Y. Lin and W. G. Pitt, “Acoustic droplet vaporization in biology and medicine,” BioMed Res. Int. 2013, 404361 (2013).
[Crossref] [PubMed]

Lin, W.-L.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Liou, H.-C.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Lipsman, N.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Liu, G. Y.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Liu, M.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Luke, G.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Luke, G. P.

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

Mainprize, T.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Markham-Coultes, K.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Matsunaga, T. O.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

Matsuura, N.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
[Crossref] [PubMed]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

Matula, T. J.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

McDannold, N.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

McMahon, D.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

Minoshima, S.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Mu Ller, G.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Namdee, K.

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Nolting, B.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Novell, A.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

O’Reilly, M. A.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Oakden, W.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Odéen, H.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Olumolade, O. O.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Ostlie, M. A.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Pan, J.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Papadopoulou, V.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Payne, A. H.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Perry, J.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Pilatou, M.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Pitt, W. G.

C. Y. Lin and W. G. Pitt, “Acoustic droplet vaporization in biology and medicine,” BioMed Res. Int. 2013, 404361 (2013).
[Crossref] [PubMed]

Poon, C.

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

Profili, D.

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Rapoport, N.

N. Rapoport, “Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

Reichert, E. C.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Reina, V.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Remington, A.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

Rui, M.

Sahgal, A.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Sanson, M.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Santiesteban, D. Y.

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

Seo, M.

M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
[Crossref] [PubMed]

Sheeran, P. S.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

Sheikov, N.

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

Stanisz, G. J.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Strohm, E.

Stump, A. J.

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Tan, Y. H.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Thévenot, E.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Trudeau, M.

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Tu, J.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

Tung, Y. S.

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

VanderLaan, D.

Vignot, A.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Vlachos, F.

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

Vykhodtseva, N.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
[Crossref] [PubMed]

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

Wang, S.

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

Weber-Adrian, D.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Whyne, C. M.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Williams, R.

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
[Crossref] [PubMed]

Wilson, C. M.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Wilson, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Wu, S. Y.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Yang, F.-Y.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Yang, R.-S.

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

Yarmoska, S. K.

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Yee, A. J.

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

Yoon, C.

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Yoon, H.

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Zhang, Y.

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

Zheng, W.

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

ACS Nano (2)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Acta Neurochir. Suppl. (Wien) (1)

K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Non-invasive opening of BBB by focused ultrasound,” Acta Neurochir. Suppl. (Wien) 86, 555–558 (2003).
[PubMed]

Adv. Drug Deliv. Rev. (1)

M. Aryal, C. D. Arvanitis, P. M. Alexander, and N. McDannold, “Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system,” Adv. Drug Deliv. Rev. 72, 94–109 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

N. Rapoport, “Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery,” Adv. Exp. Med. Biol. 880, 221–241 (2016).
[Crossref] [PubMed]

BioMed Res. Int. (1)

C. Y. Lin and W. G. Pitt, “Acoustic droplet vaporization in biology and medicine,” BioMed Res. Int. 2013, 404361 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Curr. Pharm. Des. (1)

P. S. Sheeran and P. A. Dayton, “Phase-change contrast agents for imaging and therapy,” Curr. Pharm. Des. 18(15), 2152–2165 (2012).
[Crossref] [PubMed]

Gene Ther. (1)

D. Weber-Adrian, E. Thévenot, M. A. O’Reilly, W. Oakden, M. K. Akens, N. Ellens, K. Markham-Coultes, A. Burgess, J. Finkelstein, A. J. Yee, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen, and I. Aubert, “Gene delivery to the spinal cord using MRI-guided focused ultrasound,” Gene Ther. 22(7), 568–577 (2015).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. J. Choi, J. A. Feshitan, B. Baseri, S. Wang, Y. S. Tung, M. A. Borden, and E. E. Konofagou, “Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo,” IEEE Trans. Biomed. Eng. 57(1), 145–154 (2010).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

H. Yoon, K. A. Hallam, C. Yoon, and S. Y. Emelianov, “Super-resolution imaging with ultrafast ultrasound imaging of optically triggered perfluorohexane nanodroplets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1, 1 (2018).
[Crossref] [PubMed]

P. S. Sheeran, N. Matsuura, M. A. Borden, R. Williams, T. O. Matsunaga, P. N. Burns, and P. A. Dayton, “Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1), 252–263 (2017).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, “The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice,” J. Acoust. Soc. Am. 130(5), 3059–3067 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999).
[Crossref] [PubMed]

J. Control. Release (1)

C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control. Release 172(3), 795–804 (2013).
[Crossref] [PubMed]

Lab Chip (1)

M. Seo, R. Williams, and N. Matsuura, “Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets,” Lab Chip 15(17), 3581–3590 (2015).
[Crossref] [PubMed]

Med. Phys. (1)

H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, “Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,” Med. Phys. 44(7), 3444–3449 (2017).
[Crossref] [PubMed]

Nano Lett. (2)

D. Y. Santiesteban, D. S. Dumani, D. Profili, and S. Y. Emelianov, “Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents,” Nano Lett. 17(10), 5984–5989 (2017).
[Crossref] [PubMed]

G. P. Luke, A. S. Hannah, and S. Y. Emelianov, “Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets,” Nano Lett. 16(4), 2556–2559 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3(1), 618 (2012).
[Crossref] [PubMed]

Neural Regen. Res. (1)

A. H. Payne, G. W. Hawryluk, Y. Anzai, H. Odéen, M. A. Ostlie, E. C. Reichert, A. J. Stump, S. Minoshima, and D. J. Cross, “Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability,” Neural Regen. Res. 12(12), 2045–2049 (2017).
[Crossref] [PubMed]

Neuro-Oncol. (1)

N. Lipsman, S. Ironside, R. Alkins, A. Bethune, Y. Huang, J. Perry, A. Sahgal, M. Trudeau, K. Hynynen, and T. Mainprize, “SCDT-51. initial experience of blood-brain barrier opening for chemotherapeutic-drug delivery to brain tumors by MR-guided focused ultrasound,” Neuro-Oncol. 19(6), vi275 (2017).
[Crossref]

Neuropharmacology (1)

C. Poon, D. McMahon, and K. Hynynen, “Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound,” Neuropharmacology 120, 20–37 (2017).
[Crossref] [PubMed]

Neurosurg. Focus (1)

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, and G. A. Grant, “Therapeutic strategies to improve drug delivery across the blood-brain barrier,” Neurosurg. Focus 38(3), E9 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. Y. Wu, S. M. Fix, C. B. Arena, C. C. Chen, W. Zheng, O. O. Olumolade, V. Papadopoulou, A. Novell, P. A. Dayton, and E. E. Konofagou, “Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery,” Phys. Med. Biol. 63(3), 035002 (2018).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Namdee, M. Carrasco-Teja, M. B. Fish, P. Charoenphol, and O. Eniola-Adefeso, “Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers,” Sci. Rep. 5(1), 11631 (2015).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J. Y. Chapelon, L. Capelle, P. Cornu, M. Sanson, K. Hoang-Xuan, J. Y. Delattre, and A. Idbaih, “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Sci. Transl. Med. 8(343), 343re2 (2016).
[Crossref] [PubMed]

Theranostics (1)

A. S. Hannah, G. P. Luke, and S. Y. Emelianov, “Blinking phase-change nanocapsules enable background-free ultrasound imaging,” Theranostics 6(11), 1866–1876 (2016).
[Crossref] [PubMed]

Ultrasonics (1)

N. Vykhodtseva, N. McDannold, and K. Hynynen, “Progress and problems in the application of focused ultrasound for blood-brain barrier disruption,” Ultrasonics 48(4), 279–296 (2008).
[Crossref] [PubMed]

Ultrasound Med. Biol. (5)

N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol. 30(7), 979–989 (2004).
[Crossref] [PubMed]

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, “Correlation between inertial cavitation dose and endothelial cell damage in vivo,” Ultrasound Med. Biol. 32(10), 1611–1619 (2006).
[Crossref] [PubMed]

T. Kobus, N. Vykhodtseva, M. Pilatou, Y. Zhang, and N. McDannold, “Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound,” Ultrasound Med. Biol. 42(2), 481–492 (2016).
[Crossref] [PubMed]

F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” Ultrasound Med. Biol. 33(9), 1421–1427 (2007).
[Crossref] [PubMed]

N. McDannold, N. Vykhodtseva, and K. Hynynen, “Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study,” Ultrasound Med. Biol. 33(4), 584–590 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Characterization of perfluorohexane nanodroplets (PFHnDs) (A) Size distribution of droplets (340 nm ± 170 nm). (B) Normalized absorbance spectra of droplets containing a near-infrared (NIR) dye with a peak absorption at 1064 nm and Evans Blue dye with a peak optical absorption at 600 nm, both of which are used for in vivo experiments of blood brain barrier opening. (C) Zeta Potential of the fluorosurfactant shell of the PFHnDs, with a peak at −21 mV. (D) Normalized ultrasound signal produced by PFHnDs as they repeatedly vaporize in response to pulsed laser irradiation and then immediately recondense after each laser pulse.
Fig. 2
Fig. 2 Photographs of Evans Blue (EB) dye extravasation into tissue (A-B) Whole brain (top view) image and coronal cross-section of brain showing EB dye leakage into brain tissue post-irradiation. Rounded dashed contour highlights area of EB dye extravasation and the horizontal dashed line indicates the location of the coronal cross section displayed in panel B. (C-D) Control: whole brain image and coronal cross section of brain with EB dye and droplets administered but no laser irradiation applied. Without laser irradiation, EB dye is unable to extravasate across the blood brain barrier, preventing tissue staining. (E-F) Control: whole brain image and coronal cross-section of brain with laser irradiation applied and EB dye administered but no droplets injected. Without droplets, EB dye is unable to extravasate across the blood brain barrier, preventing tissue staining.
Fig. 3
Fig. 3 Ex vivo photoacoustic and ultrasound (USPA) imaging of murine brains (A) USPA imaging of an animal with blood brain barrier opening and release of near-infrared (NIR) dye from PFHnDs after irradiation. After opening, the NIR dye has extravasated across the blood brain barrier and provides signal when imaged at 1064 nm. (B) Control: USPA imaging demonstrating that without laser irradiation to vaporize droplets, no NIR dye has extravasated, resulting in no PA signal produced at the imaging wavelength. (C) Control: USPA image demonstrating that without droplets to open the blood brain barrier, no NIR dye has extravasated, resulting in no PA signal produced at the imaging wavelength.
Fig. 4
Fig. 4 Immunohistochemical and histological analysis of mouse brain tissue. (A-B) Immunohistochemical (IHC) staining of DAPI and secondary antibody IgG of a mouse treated with both droplets and laser irradiation on the right side of the brain. Presence of green fluorescence (white arrows) demonstrates IgG extravasation and opening of the blood brain barrier. (C) Hematoxylin and eosin (H&E) staining of a mouse treated with both droplets and laser irradiation. Presence of red blood cells is indicated by bright red eosin staining (black arrows) and demonstrates extravasation and opening of the blood brain barrier. (D-E) Control: IHC staining of a mouse treated with droplets only and no laser irradiation. (F) H&E staining of a mouse treated with droplets only and no laser irradiation. (G-H) Control: IHC staining of a mouse treated with laser irradiation but with no droplets injected. (I) H&E staining of a mouse treated with laser irradiation but with no droplets injected. (A),(D),(G) are fluorescence images displaying the entire 20 µm tissue slice while (B-C), (E-F), and (H-I) display a close-up view of the tissue section.

Metrics