Abstract

A method based on a dual-type (transmission and fluorescence) hyperspectral microscopic image system was developed to identify species of intestinal fungi. Living fungi are difficult to identify via transmission spectra or fluorescence spectra alone. We propose an identification method based on both fluorescence and transmission spectra that employs a series of image processing methods. Three species of intestinal fungi were used to evaluate the method. The results demonstrate that the specificity of the model trained with dual-type spectra was 98.36%, whereas the specificities achieved by training with fluorescence spectra and transmission spectra alone were 94.04% and 92.88%, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images

Siqi Zhu, Kang Su, Yumeng Liu, Hao Yin, Zhen Li, Furong Huang, Zhenqiang Chen, Weidong Chen, Ge Zhang, and Yihong Chen
Biomed. Opt. Express 6(4) 1135-1145 (2015)

Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology

Qian Wang, Jianbiao Wang, Mei Zhou, Qingli Li, and Yiting Wang
Biomed. Opt. Express 8(6) 3017-3028 (2017)

Diagnosis of dermatophytosis using single fungus endogenous fluorescence spectrometry

Fei Ye, Meirong Li, Siqi Zhu, Qingliang Zhao, and Jingang Zhong
Biomed. Opt. Express 9(6) 2733-2742 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
    [Crossref] [PubMed]
  2. K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
    [Crossref] [PubMed]
  3. F. Cappa and P. S. Cocconcelli, “Identification of fungi from dairy products by means of 18S rRNA analysis,” Int. J. Food Microbiol. 69(1-2), 157–160 (2001).
    [Crossref] [PubMed]
  4. M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
    [Crossref] [PubMed]
  5. M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
    [Crossref] [PubMed]
  6. A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
    [Crossref] [PubMed]
  7. M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
    [Crossref] [PubMed]
  8. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
    [Crossref]
  9. A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
    [Crossref]
  10. D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
    [Crossref] [PubMed]
  11. A. Robles-Kelly and C. P. Juynh, Imaging Spectroscopy for Scene Analysis (Springer, 2013).
  12. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
    [Crossref] [PubMed]
  13. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
    [Crossref] [PubMed]
  14. D. Roblyer, C. Kurachi, A. M. Gillenwater, and R. Richards-Kortum, “In vivo fluorescence hyperspectral imaging of oral neoplasia,” In Advanced Biomedical and Clinical Diagnostic Systems VII7169, 71690J (2009).
    [Crossref]
  15. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  16. S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
    [Crossref]
  17. S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
    [Crossref] [PubMed]
  18. G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
    [Crossref] [PubMed]
  19. F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).
  20. S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
    [Crossref] [PubMed]
  21. K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
    [Crossref]
  22. L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
    [Crossref]
  23. A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
    [Crossref] [PubMed]
  24. X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
    [Crossref]
  25. M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
    [Crossref] [PubMed]
  26. S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher discriminant analysis with kernels,” in Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48, IEEE (1999).
  27. S. Raudys and R. P. Duin, “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix,” Pattern Recogn. Left. 19(5–6), 385–392 (1998).
    [Crossref]
  28. H. B. Gao and W. X. Wang, “New connected component labeling algorithm for binary image,” Jisuanji Yingyong/ J. Comp. App. 27(11), 2776–2777 (2007).
  29. C. Cao and Y. Li, “Fast algorithm for connected region labeling of binary image,” Sci. Tech. Eng. 33, 8168–8171 (2010).

2018 (1)

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

2017 (1)

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

2016 (2)

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

2015 (1)

2014 (1)

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

2013 (1)

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

2012 (2)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

2011 (2)

A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
[Crossref]

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

2010 (2)

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

C. Cao and Y. Li, “Fast algorithm for connected region labeling of binary image,” Sci. Tech. Eng. 33, 8168–8171 (2010).

2008 (2)

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

2007 (2)

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

H. B. Gao and W. X. Wang, “New connected component labeling algorithm for binary image,” Jisuanji Yingyong/ J. Comp. App. 27(11), 2776–2777 (2007).

2006 (1)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

2004 (1)

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

2002 (1)

M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
[Crossref] [PubMed]

2001 (2)

F. Cappa and P. S. Cocconcelli, “Identification of fungi from dairy products by means of 18S rRNA analysis,” Int. J. Food Microbiol. 69(1-2), 157–160 (2001).
[Crossref] [PubMed]

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

2000 (1)

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

1999 (1)

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

1998 (1)

S. Raudys and R. P. Duin, “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix,” Pattern Recogn. Left. 19(5–6), 385–392 (1998).
[Crossref]

1994 (1)

M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
[Crossref] [PubMed]

Angelakis, E.

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

Ashton, D. S.

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Bi, X.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Bonifazi, G.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Brigidi, P.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Campieri, M.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Candela, M.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Cao, C.

C. Cao and Y. Li, “Fast algorithm for connected region labeling of binary image,” Sci. Tech. Eng. 33, 8168–8171 (2010).

Cappa, F.

F. Cappa and P. S. Cocconcelli, “Identification of fungi from dairy products by means of 18S rRNA analysis,” Int. J. Food Microbiol. 69(1-2), 157–160 (2001).
[Crossref] [PubMed]

Carnevali, P.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chen, K.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Chen, W.

Chen, Y.

Chen, Z.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
[Crossref] [PubMed]

Chen, Z. G.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Chen, Z. Q.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

Ciati, R.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Cocconcelli, P. S.

F. Cappa and P. S. Cocconcelli, “Identification of fungi from dairy products by means of 18S rRNA analysis,” Int. J. Food Microbiol. 69(1-2), 157–160 (2001).
[Crossref] [PubMed]

Coifman, R.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Cunningham, G.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Curk, M. C.

M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
[Crossref] [PubMed]

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Davis, G.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

De Keersmaecker, S. C. J.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Del Fiore, A.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Denovo, R. C.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Domin, M. A.

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Duin, R. P.

S. Raudys and R. P. Duin, “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix,” Pattern Recogn. Left. 19(5–6), 385–392 (1998).
[Crossref]

Fabbri, A. A.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Fanelli, C.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Fei, B.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Fujita, Y.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Furman, S.

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

Gao, H. B.

H. B. Gao and W. X. Wang, “New connected component labeling algorithm for binary image,” Jisuanji Yingyong/ J. Comp. App. 27(11), 2776–2777 (2007).

Garner, H. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Gionchetti, P.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Goto, A.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Halig, L.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Hamabe, K.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Hamamoto, Y.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Heia, K.

A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
[Crossref]

Henry, M.

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

Hermans, K.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Huang, F.

Hubert, J. C.

M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
[Crossref] [PubMed]

Johnson, K.

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Jones, L.

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Kasili, P.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Kimiya, T.

A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
[Crossref]

Kirschner, C.

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Kiyotoki, S.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Kohler, A.

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Lau, D.

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

Lebeer, S. E.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Li, A.

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

Li, M.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

Li, M. G.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

Li, Y.

C. Cao and Y. Li, “Fast algorithm for connected region labeling of binary image,” Sci. Tech. Eng. 33, 8168–8171 (2010).

Li, Z.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
[Crossref] [PubMed]

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

Liu, Y.

Livett, M.

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

Lu, G.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Maggioni, M.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Martin, M. E.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Million, M.

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

Møretrø, T.

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Narvhus, J. A.

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Nielsen, T.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Nishikawa, J.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Okamoto, T.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Oust, A.

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Overholt, B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Panjehpour, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Peledan, F.

M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
[Crossref] [PubMed]

Perea Vélez, M.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Perna, F.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Phan, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Pinzari, F.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Qin, X.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Raoult, D.

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

Raudys, S.

S. Raudys and R. P. Duin, “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix,” Pattern Recogn. Left. 19(5–6), 385–392 (1998).
[Crossref]

Reverberi, M.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Ricelli, A.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Rizzello, F.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Ruch, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Saito, M.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Sakaida, I.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Satori, S.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Scherer, S.

M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
[Crossref] [PubMed]

Schultz, R. A.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Seiler, H.

M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
[Crossref] [PubMed]

Serranti, S.

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

Sivertsen, A. H.

A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
[Crossref]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Su, K.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
[Crossref] [PubMed]

Takeuchi, Y.

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

Vanderleyden, J.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Verhoeven, T. L. A.

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

Villis, C.

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

Vitali, B.

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

Vo-Dinh, T.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Wabuyele, M. B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Wang, D.

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

Wang, W. X.

H. B. Gao and W. X. Wang, “New connected component labeling algorithm for binary image,” Jisuanji Yingyong/ J. Comp. App. 27(11), 2776–2777 (2007).

Warner, F.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Wei, L.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

Welham, K. J.

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Wen, L.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

Wenning, M.

M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
[Crossref] [PubMed]

Wilson, D.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Woolfe, F.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Wyatt, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Xian, J.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

Ye, P.

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

Yin, H.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
[Crossref] [PubMed]

Zavaleta, J. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Zhang, G.

Zhu, S.

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

S. Zhu, K. Su, Y. Liu, H. Yin, Z. Li, F. Huang, Z. Chen, W. Chen, G. Zhang, and Y. Chen, “Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images,” Biomed. Opt. Express 6(4), 1135–1145 (2015).
[Crossref] [PubMed]

Zhu, S. Q.

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

Zucker, S.

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Anal. Chim. Acta (1)

D. Lau, C. Villis, S. Furman, and M. Livett, “Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting,” Anal. Chim. Acta 610(1), 15–24 (2008).
[Crossref] [PubMed]

Anal. Lett. (1)

X. Bi, S. Zhu, J. Xian, L. Wen, H. Yin, M. Li, and Z. Chen, “Multi-type hyperspectral microscopic imaging for precise identification of pollens,” Anal. Lett. 51(14), 2295–2305 (2018).
[Crossref]

Ann. Biomed. Eng. (1)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (1)

M. Wenning, H. Seiler, and S. Scherer, “Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts,” Appl. Environ. Microbiol. 68(10), 4717–4721 (2002).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

Biomed. Opt. Express (1)

Cytometry (1)

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

FEMS Microbiol. Lett. (1)

M. C. Curk, F. Peledan, and J. C. Hubert, “Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species,” FEMS Microbiol. Lett. 123(3), 241–248 (1994).
[Crossref] [PubMed]

IEEE. T. Med. Imaging (1)

F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE. T. Med. Imaging 99,99 (1999).

Int. J. Food Microbiol. (3)

A. Del Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi, and C. Fanelli, “Early detection of toxigenic fungi on maize by hyperspectral imaging analysis,” Int. J. Food Microbiol. 144(1), 64–71 (2010).
[Crossref] [PubMed]

M. Candela, F. Perna, P. Carnevali, B. Vitali, R. Ciati, P. Gionchetti, F. Rizzello, M. Campieri, and P. Brigidi, “Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production,” Int. J. Food Microbiol. 125(3), 286–292 (2008).
[Crossref] [PubMed]

F. Cappa and P. S. Cocconcelli, “Identification of fungi from dairy products by means of 18S rRNA analysis,” Int. J. Food Microbiol. 69(1-2), 157–160 (2001).
[Crossref] [PubMed]

J. Appl. Microbiol. (1)

M. Perea Vélez, K. Hermans, T. L. A. Verhoeven, S. E. Lebeer, J. Vanderleyden, and S. C. J. De Keersmaecker, “Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products,” J. Appl. Microbiol. 103(3), 666–674 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, and I. Sakaida, “New method for detection of gastric cancer by hyperspectral imaging: a pilot study,” J. Biomed. Opt. 18(2), 026010 (2013).
[Crossref] [PubMed]

G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, “Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging,” J. Biomed. Opt. 19(10), 106004 (2014).
[Crossref] [PubMed]

J. Food Eng. (1)

A. H. Sivertsen, T. Kimiya, and K. Heia, “Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy,” J. Food Eng. 103(3), 317–323 (2011).
[Crossref]

J. Food Sci. (1)

E. Angelakis, M. Million, M. Henry, and D. Raoult, “Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry,” J. Food Sci. 76(8), M568–M572 (2011).
[Crossref] [PubMed]

J. Microbiol. Methods (1)

A. Oust, T. Møretrø, C. Kirschner, J. A. Narvhus, and A. Kohler, “FT-IR spectroscopy for identification of closely related lactobacilli,” J. Microbiol. Methods 59(2), 149–162 (2004).
[Crossref] [PubMed]

Jisuanji Yingyong/ J. Comp. App. (1)

H. B. Gao and W. X. Wang, “New connected component labeling algorithm for binary image,” Jisuanji Yingyong/ J. Comp. App. 27(11), 2776–2777 (2007).

Opt. Eng. (1)

K. Su, S. Zhu, L. Wei, Z. Li, H. Yin, P. Ye, A. Li, Z. Chen, and M. Li, “Classification of bee pollen grains using hyperspectral microscopy imaging and Fisher linear classifier,” Opt. Eng. 55(5), 053102 (2016).
[Crossref]

Optik-International Journal for Light and Electron Optics (1)

S. Q. Zhu, K. Su, M. G. Li, Z. Q. Chen, H. Yin, and Z. Li, “Multi-type hyper-spectral microscopic imaging system,” Optik-International Journal for Light and Electron Optics 127(18), 7218–7224 (2016).
[Crossref]

Pattern Recogn. Left. (1)

S. Raudys and R. P. Duin, “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix,” Pattern Recogn. Left. 19(5–6), 385–392 (1998).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Rapid Commun. Mass Spectrom. (1)

K. J. Welham, M. A. Domin, K. Johnson, L. Jones, and D. S. Ashton, “Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 14(5), 307–310 (2000).
[Crossref] [PubMed]

Sci. Tech. Eng. (1)

C. Cao and Y. Li, “Fast algorithm for connected region labeling of binary image,” Sci. Tech. Eng. 33, 8168–8171 (2010).

Spectrosc. Lett. (1)

L. Wei, K. Su, S. Q. Zhu, H. Yin, Z. Li, Z. Q. Chen, and M. G. Li, “Identification of microalgae by hyperspectral microscopic imaging system,” Spectrosc. Lett. 50(1), 59–63 (2017).
[Crossref]

Other (3)

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher discriminant analysis with kernels,” in Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48, IEEE (1999).

D. Roblyer, C. Kurachi, A. M. Gillenwater, and R. Richards-Kortum, “In vivo fluorescence hyperspectral imaging of oral neoplasia,” In Advanced Biomedical and Clinical Diagnostic Systems VII7169, 71690J (2009).
[Crossref]

A. Robles-Kelly and C. P. Juynh, Imaging Spectroscopy for Scene Analysis (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of self-built hyperspectral microscopic imaging system.
Fig. 2
Fig. 2 Hyperspectral data processing procedure. I1 and I2 represent spatial dimensions. λ represents the spectral dimension. K1, K2, K3, and K4 represent the numbers of the data cubes of each group. X represents the collection of the hyperspectral data. X(1), X(m), X(k1), X(k2), X(k3), and X(k4) represent different sets of hyperspectral data cube.
Fig. 3
Fig. 3 Characteristic spectral curves and hyperspectral images of three species of samples. (a) and (b) are the average transmittance curves and the average normalized fluorescence intensity curves, respectively, of Candida utilis, Aspergillus flavus, and Aspergillus fumigatus. (c), (f), and (i) are the fluorescence images of Candida utilis, Aspergillus flavus, and Aspergillus fumigatus, respectively, at a wavelength of 460 nm. (d), (g), and (j) are the fluorescence images of Candida utilis, Aspergillus flavus, and Aspergillus fumigatus, respectively, at a wavelength of 546 nm. (e), (h), and (k) are the transmission images of Candida utilis, Aspergillus flavus, and Aspergillus fumigatus, respectively, at a wavelength of 660 nm. The scale bar is 500 μm.
Fig. 4
Fig. 4 Procedure for obtaining binary images. (a) is the fluorescence image of the mixed sample at a wavelength of 546 nm and (b) is the binary image based on the fluorescence image. (c) is the transmission image of the mixed sample at a wavelength of 660 nm and (d) is the binary image based on the transmission image. The scale bar is 500 μm.
Fig. 5
Fig. 5 Schematic illustration of the image segmentation method. (a) illustrates the principle of the image segmentation method for obtaining binary images. (b) illustrates the principle of the single threshold method for obtaining binary images.
Fig. 6
Fig. 6 Binary image processing procedure. (a) is a binary image that based only on a single threshold and (b) is a binary image based on different thresholds in different regions. (c) is a binary image obtained after application of the Gaussian low-pass filter. The regions in the red boxes are the cropped and magnified images of the regions to which the arrows point. The scale bar is 500 μm.
Fig. 7
Fig. 7 Flow chart of image processing algorithm. (a) is the original fluorescence image of the mixed sample. (b) is the normalized intensity curves of the agar block and three species of fungi. (c) is the binary image, (d) and (e) are the transmission and fluorescence images, respectively. (f) is the classified grayscale image. (g) is the grayscale histogram of the classified grayscale image from which the background pixels were removed. (h) and (i) are the pseudo color classified images without and with correction using the connected-region labeling algorithm, respectively. Candida utilis, Aspergillus flavus, and Aspergillus fumigatus are indicated in yellow, green, and red, respectively. The regions in the yellow boxes are the cropped and magnified images of the regions in the dotted boxes. The scale bar is 500 μm.
Fig. 8
Fig. 8 Diagram of the whole processing algorithm
Fig. 9
Fig. 9 Growth competition in the mixed sample at 0, 24, and 48 h. (a), (b), and (c) are the pseudo color classified images of the mixed sample at 0, 24, and 48 h, respectively. (d), (e), and (f) are the transmission images of the mixed sample at 0, 24, and 48 h, respectively. The scale bar is 500 μm.

Tables (7)

Tables Icon

Table 1 Experimental data for single-species fungi

Tables Icon

Table 2 Results of cross-validation of the standard samples based on the fluorescence spectra information.

Tables Icon

Table 3 Results of cross-validation of the standard samples based on the transmission spectra information.

Tables Icon

Table 4 Results of cross-validation of the standard samples based on the fluorescence spectra information and the transmission spectra information.

Tables Icon

Table 5 Results of the Fisher identification of the test samples based on the fluorescence spectra information.

Tables Icon

Table 6 Results of the Fisher identification of the test samples based on the transmission spectra information.

Tables Icon

Table 7 Results of the fisher identification of the test samples based on the fluorescence spectra information and the transmission spectra information.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = I ( λ ) sample I ( λ ) background .
I n ( λ ) = I ( λ ) I λ max .
SEN = TP TP + FN
SPEC = TN TN + FP

Metrics