Abstract

We present a generalization of the non-iterative phase retrieval in X-ray phase contrast imaging applicable for an arbitrary linear shift-invariant (LSI) imaging system with a non-negligible amount of free space propagation (termed as Fresnel-like). Our novel approach poses no restrictions on the propagation distance between optical elements of the system. In turn, the requirements are only demanded for the transfer function of the optical elements, which should be approximable by second-order Taylor polynomials. Furthermore, we show that the method can be conveniently used as an initial guess for iterative phase retrieval, resulting in faster convergence. The proposed approach is tested on synthetic and experimentally measured holograms obtained using a Bragg magnifier microscope -- a representative of Fresnel-like LSI imaging systems. Finally, the algorithm is applied to a whole micro-tomographic scan of a biological specimen of a tardigrade, revealing morphological details at the spatial resolution of 300 nm -- limiting resolution of the actual imaging system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach
Opt. Express 22(18) 21508-21520 (2014)

Computed tomography with linear shift-invariant optical systems

Timur E. Gureyev, Yakov I. Nesterets, Konstantin M. Pavlov, and Stephen W. Wilkins
J. Opt. Soc. Am. A 24(8) 2230-2241 (2007)

Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue

Boliang Yu, Loriane Weber, Alexandra Pacureanu, Max Langer, Cecile Olivier, Peter Cloetens, and Françoise Peyrin
Opt. Express 26(9) 11110-11124 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Paganin, Coherent X-Ray Optics, Oxford Science Publications (OUPOxford, 2006).
    [Crossref]
  2. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
    [Crossref] [PubMed]
  3. K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
    [Crossref]
  4. T. Gureyev, “Composite techniques for phase retrieval in the fresnel region,” Opt. Commun. 220, 49–58 (2003).
    [Crossref]
  5. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
    [Crossref]
  6. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
    [Crossref]
  7. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
    [Crossref]
  8. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
    [Crossref]
  9. T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, “Computed tomography with linear shift-invariant optical systems,” J. Opt. Soc. Am. A 24, 2230–2241 (2007).
    [Crossref]
  10. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first born-and rytov-type approximations,” Appl. Opt. 43, 2418–2430 (2004).
    [Crossref] [PubMed]
  11. P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
    [Crossref]
  12. J. P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and in-line holograms,” Optik 49, 1 (1977).
  13. S. Hrivňak, J. Uličný, L. Mikeš, A. Cecilia, E. Hamann, T. Baumbach, L. Švéda, Z. Zápražný, D. Korytár, E. Gimenez-Navarro, U. H. Wagner, H. Greven, and P. Vagovič, “Single-distance phase retrieval algorithm for bragg magnifier microscope,” Opt. Express 24, 27753–27762 (2016).
    [Crossref]
  14. P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
    [Crossref]
  15. P. Cloetens, “Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation,” Ph.D. thesis, Vrije UniversiteitBrussel (1999).
  16. J. Moosmann, R. Hofmann, and T. Baumbach, “Single-distance phase retrieval at large phase shifts,” Opt. Express 19, 12066–12073 (2011).
    [Crossref] [PubMed]
  17. R. Hofmann, J. Moosmann, and T. Baumbach, “Criticality in single-distance phase retrieval,” Opt. Express 19, 25881–25890 (2011).
    [Crossref]
  18. W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
    [Crossref] [PubMed]
  19. W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
    [Crossref]
  20. C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).
  21. T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
    [Crossref] [PubMed]
  22. M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
    [Crossref] [PubMed]

2016 (2)

S. Hrivňak, J. Uličný, L. Mikeš, A. Cecilia, E. Hamann, T. Baumbach, L. Švéda, Z. Zápražný, D. Korytár, E. Gimenez-Navarro, U. H. Wagner, H. Greven, and P. Vagovič, “Single-distance phase retrieval algorithm for bragg magnifier microscope,” Opt. Express 24, 27753–27762 (2016).
[Crossref]

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

2014 (2)

2013 (1)

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

2011 (5)

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

J. Moosmann, R. Hofmann, and T. Baumbach, “Single-distance phase retrieval at large phase shifts,” Opt. Express 19, 12066–12073 (2011).
[Crossref] [PubMed]

R. Hofmann, J. Moosmann, and T. Baumbach, “Criticality in single-distance phase retrieval,” Opt. Express 19, 25881–25890 (2011).
[Crossref]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
[Crossref] [PubMed]

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

2007 (2)

T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, “Computed tomography with linear shift-invariant optical systems,” J. Opt. Soc. Am. A 24, 2230–2241 (2007).
[Crossref]

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

2005 (1)

M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
[Crossref] [PubMed]

2004 (3)

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first born-and rytov-type approximations,” Appl. Opt. 43, 2418–2430 (2004).
[Crossref] [PubMed]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

2003 (1)

T. Gureyev, “Composite techniques for phase retrieval in the fresnel region,” Opt. Commun. 220, 49–58 (2003).
[Crossref]

1996 (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

1977 (1)

J. P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and in-line holograms,” Optik 49, 1 (1977).

Aizu, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Arakawa, K.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

Bartels, M.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

Baumbach, T.

Beta, C.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Burvall, A.

Cecilia, A.

Cloetens, P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

P. Cloetens, “Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation,” Ph.D. thesis, Vrije UniversiteitBrussel (1999).

Davis, T. J.

Dolbnya, I.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Enomoto, A.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Fiederle, M.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Fleschig, U.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Frohme, M.

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

Fujiyama, A.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Gabriel, W. N.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Giewekemeyer, K.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Gimenez, E. N.

Gimenez-Navarro, E.

Goldstein, B.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Gregory, T. R.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Greven, H.

Grohme, M. A.

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

Guigay, J. P.

J. P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and in-line holograms,” Optik 49, 1 (1977).

Guigay, J.-P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

Gureyev, T.

T. Gureyev, “Composite techniques for phase retrieval in the fresnel region,” Opt. Commun. 220, 49–58 (2003).
[Crossref]

Gureyev, T. E.

T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, “Computed tomography with linear shift-invariant optical systems,” J. Opt. Soc. Am. A 24, 2230–2241 (2007).
[Crossref]

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first born-and rytov-type approximations,” Appl. Opt. 43, 2418–2430 (2004).
[Crossref] [PubMed]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

Hamann, E.

Hara, Y.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Härtwig, J.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Hashimoto, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Hertz, H. M.

Hofmann, R.

Horikawa, D. D.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Hrivnak, S.

Jeck, W. R.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Jones, C. D.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Kaczmarek, L.

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

Kalbfleisch, S.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Katayama, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kitchen, M.

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

Koenig, T.

Kohara, Y.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Kondo, K.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Korytár, D.

Koshikawa, S.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kozuka-Hata, H.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Krüger, S. P.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Kubo, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kunieda, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kuwahara, H.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Larsson, D. H.

Lewis, R. A.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

Lundström, U.

Mali, B.

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

Mayo, S. C.

McNuff, R.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Mikeš, L.

Minakuchi, Y.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Miura, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Miyagawa, K.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Momose, A.

Moosmann, J.

Morgan, M. J.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

Motoyama, A.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Nesterets, Y. I.

T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, “Computed tomography with linear shift-invariant optical systems,” J. Opt. Soc. Am. A 24, 2230–2241 (2007).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

Oberta, P.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Ohishi, K.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Olbinado, M.

Oyama, M.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Paganin, D.

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

D. Paganin, Coherent X-Ray Optics, Oxford Science Publications (OUPOxford, 2006).
[Crossref]

Patel, S. K.

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

Pavlov, K. M.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, “Computed tomography with linear shift-invariant optical systems,” J. Opt. Soc. Am. A 24, 2230–2241 (2007).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

Pelliccia, D.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Pogany, A.

Sagara, H.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Saito, Y.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Salditt, T.

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

Schatz, M.

M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
[Crossref] [PubMed]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Schill, R. O.

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

Shawney, K.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Shin-I, T.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Suzuki, Y.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Švéda, L.

Takman, P. A. C.

Tanaka, S.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Toyoda, A.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Ulicný, J.

Vagovic, P.

van Heel, M.

M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
[Crossref] [PubMed]

Wagner, U. H.

Wang, C.

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

Welnicz, W.

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

Wilkins, S. W.

Yashiro, W.

Yokobori, S.-i.

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Zápražný, Z.

Zuber, M.

Appl. Opt. (1)

Dev. Biol. (1)

W. N. Gabriel, R. McNuff, S. K. Patel, T. R. Gregory, W. R. Jeck, C. D. Jones, and B. Goldstein, “The tardigrade hypsibius dujardini, a new model for studying the evolution of development,” Dev. Biol. 312, 545–559 (2007).
[Crossref] [PubMed]

J. Insect Physiol. (1)

W. Wełnicz, M. A. Grohme, L. Kaczmarek, R. O. Schill, and M. Frohme, “Anhydrobiosis in tardigrades–the last decade,” J. Insect Physiol. 57, 577–583 (2011). Dormancy and Developmental Arrest in Invertebrates.
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (2)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133 (1996).
[Crossref]

K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D: Appl. Phys. 37, 2746 (2004).
[Crossref]

J. Struct. Biol. (1)

M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” J. Struct. Biol. 151, 250–262 (2005).
[Crossref] [PubMed]

J. Synchrotron Radiat. (1)

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Nat. Commun. (1)

T. Hashimoto, D. D. Horikawa, Y. Saito, H. Kuwahara, H. Kozuka-Hata, T. Shin-I, Y. Minakuchi, K. Ohishi, A. Motoyama, T. Aizu, A. Enomoto, K. Kondo, S. Tanaka, Y. Hara, S. Koshikawa, H. Sagara, T. Miura, S.-i. Yokobori, K. Miyagawa, Y. Suzuki, T. Kubo, M. Oyama, Y. Kohara, A. Fujiyama, K. Arakawa, T. Katayama, A. Toyoda, and T. Kunieda, “Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein,” Nat. Commun. 7, 12808 (2016).
[Crossref] [PubMed]

Opt. Commun. (2)

D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234, 87–105 (2004).
[Crossref]

T. Gureyev, “Composite techniques for phase retrieval in the fresnel region,” Opt. Commun. 220, 49–58 (2003).
[Crossref]

Opt. Express (5)

Optik (1)

J. P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and in-line holograms,” Optik 49, 1 (1977).

Phys. Rev. A (1)

K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A 83, 023804 (2011).
[Crossref]

PLOS ONE (1)

C. Wang, M. A. Grohme, B. Mali, R. O. Schill, and M. Frohme, “Towards decrypting cryptobiosis–analyzing anhydrobiosis in the tardigrade milnesium tardigradum using transcriptome sequencing,” PLOS ONE 9, 1–15 (2014).

Rev. Sci. Instruments (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instruments 66, 5486–5492 (1995).
[Crossref]

Other (2)

D. Paganin, Coherent X-Ray Optics, Oxford Science Publications (OUPOxford, 2006).
[Crossref]

P. Cloetens, “Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation,” Ph.D. thesis, Vrije UniversiteitBrussel (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The sketch of the typical X-ray phase contrast imaging experiment. The produced X-rays pass through the sample S modifying the wavefield, which is further propagated through optical elements and reaches the detector D.
Fig. 2
Fig. 2 Scheme of the 3D reconstruction procedure.
Fig. 3
Fig. 3 Test of the given method for simulated data. The first image (from the left) shows the original phantom image, the second is the simulated hologram using Bragg Magnifier, the third is the CTF reconstruction according to Eq. (28) and the fourth is the iterative reconstruction with CTF reconstruction as the starting point. Lower left image shows the horizontal central profile through the last two images and lower right image compares the convergence of our new described method and our original shrink-wrap (SW) iterative algorithm [13]. The peaks in the SW error correspond to the iterations where the support function was recalculated. The error of the reconstruction is defined as the absolute difference between phases obtained after two consecutive iterations [13].
Fig. 4
Fig. 4 Test of the given method for experimental data (revisited from [13]). The left image is the measured hologram of the biological specimen (Tardigrade) using Bragg Magnifier, the middle one is the CTF reconstruction according to Eq. (28) and the image on the right is the iterative reconstruction with CTF reconstruction as the starting point. The meaning of the lower images is the same as in the case of Fig. 3.
Fig. 5
Fig. 5 Left-a 2D slice of tardigrade acquired by the proposed method. Mouth, mouth tube, pharyngeal bulb, esophagus, and midgut are all parts of the digestive system. Ganglia and brain are parts of the neural system. Right-3D model of Tardigrade. Various internal structures are visible including those from the left figure. The yellow symmetric objects are stylets, part of digestive system. Inside the whole organism, we can see fibers.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

Ψ ˜ O U T ( f ) = Ψ ˜ I N ( f ) H ( f ) ,
T ( x 1 , x 2 ) = exp [ μ ( x 1 , x 2 ) ] exp [ i ϕ ( x 1 , x 2 ) ] ,
Ψ ( x 1 , x 2 ) = T ( x 1 , x 2 ) h ( x 1 , x 2 ) = 1 [ T ˜ ( f 1 , f 2 ) H ( f 1 , f 2 ) ] ,
I ( x 1 , x 2 ) = | Ψ ( x 1 , x 2 ) | 2 = Ψ ( x 1 , x 2 ) Ψ * ( x 1 , x 2 ) .
Ψ ˜ ( f ) = H ( f ) T ( x ) exp ( 2 π i f x ) d x .
Ψ ˜ ( f ) = H ( f ) T ( x ) exp ( 2 π i f x ) d x .
I ˜ ( f ) = Ψ ˜ ( f ) Ψ ˜ ( f ) = Ψ ˜ ( g ) Ψ ˜ ( f g ) d g ,
I ˜ ( f ) = T ( x ) T ( y ) exp ( 2 π i f y ) { H ( g ) H ( g f ) exp [ 2 π i g ( x y ) ] d g } I H ( x y , f ) d x d y ,
I ˜ F r ( f ) = exp ( i π λ z f 2 ) T ( x ) T ( x + λ z f ) exp ( 2 π i f x ) d x
I ˜ F r ( f ) = T ( x λ z 2 f ) T ( x + λ z 2 f ) exp ( 2 π i f x ) d x .
I ˜ F r ( f ) = δ ( f ) + 2 ϕ ˜ ( f ) sin ( π λ z f 2 ) .
ϕ ( x ) = 1 I ˜ exp F r ( f ) 2 sin ( π λ z f 2 ) + α ( f ) ,
H ( f ) = A ( f ) exp ( i π λ z e f f 2 ) ,
A ( f ) = | A ( f ) | exp [ i φ ( f ) ] .
| A ( f ) | A ( 0 )
φ ( f ) φ ( 0 ) + φ ( 0 ) f + 1 2 φ ( 0 ) f 2
I H ( x y , f ) = A 0 2 exp [ i ( π λ z e f f 2 + φ 0 f 1 2 φ 0 f 2 ) ] δ ( x y + λ z e f f φ 0 2 π f )
I ˜ ( f ) = A 0 2 exp ( i φ 0 f ) T ( x λ z e f 2 f + φ 0 4 π f ) T ( x + λ z e f 2 f φ 0 4 π f ) exp ( 2 π i f x ) d x .
| ϕ ( x + λ z e f 2 f φ 0 4 π f ) ϕ ( x λ z e f 2 f + φ 0 4 π f ) | 1 ,
I ˜ ( f ) = A 0 2 exp ( i φ 0 f ) { δ ( f ) + 2 ϕ ˜ ( f ) sin [ π ( λ z e f φ 0 2 π ) f 2 ] } .
ϕ C T F ( x ) = 1 I ˜ exp ( f ) 2 A 0 2 exp ( i φ 0 f ) sin [ π ( λ z e f φ 0 2 π ) f 2 ] + α ( f ) .
| A ( f ) | A ( 0 ) A 0
φ ( f ) φ ( 0 ) + k = 1 2 φ 0 k f k + 1 2 k , l = 1 2 φ 0 k l f k f l ,
I ˜ ( f ) = A 0 2 exp ( i k = 1 2 φ 0 k f k ) [ δ ( f ) + 2 ϕ ˜ ( f ) sin ( π λ k = 1 2 z e f ( k ) f k 2 1 2 k , l = 1 2 φ 0 k l f k f l ) ] ,
| ϕ ( x 1 + Δ 1 , x 2 + Δ 2 ) ϕ ( x 1 Δ 1 , x 2 Δ 2 ) | 1 ,
Δ 1 = λ z e f ( 1 ) f 1 2 φ 011 f 1 + φ 012 f 2 4 π ,
Δ 2 = λ z e f ( 2 ) f 2 2 φ 022 f 2 + φ 021 f 1 4 π .
ϕ C T F ( x 1 , x 2 ) = 1 I ˜ exp ( f 1 , f 2 ) 2 A 0 2 exp ( i k = 1 2 φ 0 k f k ) sin ( π λ k = 1 2 z e f ( k ) f k 2 1 2 k , l = 1 2 φ 0 k l f k f l ) + α ( f 1 , f 2 ) .
H ( f ) = E 1 E 2 E 3 E 4 A ( f ) exp [ i π λ ( z e f ( 1 ) f 1 2 + z e f ( 2 ) f 2 2 ) ] ,
z e f ( 1 ) = z S 1 + z 12 M 1 + z 23 M 1 M 2 + z 34 M 1 M 2 + z 4 D M 1 M 2 ,
z e f ( 2 ) = z S 1 + z 12 + z 23 + z 34 M 3 + z 4 D M 3 M 4 ,

Metrics