Abstract

Optical methods for imaging and stimulation of biological events based on the use of visible light are limited to the superficial layers of tissue due to the significant absorption and scattering of light. Here, we demonstrate the design and implementation of passive micro-structured lightbulbs (MLBs) containing bright-emitting lanthanide-doped upconverting nanoparticles (UCNPs) for light delivery deep into the tissue. The MLBs are realized as cylindrical pillars made of Parylene C polymer that can be implanted deep into the tissue. The encapsulated UCNPs absorb near-infrared (NIR) light at λ = 980 nm, which undergoes much less absorption than the blue light in the brain tissue, and then locally emit blue light (1G43H6 and 1D23F4 transitions) that can be used for optogenetic excitation of neurons in the brain. The 3H43H6 transition will result in the emission of higher energy NIR photons at λ = 800 nm that can be used for imaging and tracking MLBs through thick tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis and singlet oxygen activities of near infrared photosensitizers by conjugation with upconversion nanoparticles

Qian Yang, Chuang Zhao, Jun Zhao, and Yong Ye
Opt. Mater. Express 7(3) 913-923 (2017)

Designed Er3+-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging

Xuanyuan Wen, Baoju Wang, Ruitao Wu, Nana Li, Sailing He, and Qiuqiang Zhan
Biomed. Opt. Express 7(6) 2174-2185 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
    [Crossref] [PubMed]
  2. E. S. Boyden, “A history of optogenetics: the development of tools for controlling brain circuits with light,” F1000 Biol. Rep. 3, 11 (2011).
    [Crossref] [PubMed]
  3. B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
    [Crossref] [PubMed]
  4. M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
    [Crossref] [PubMed]
  5. L. Yang and S. J. Miklavcic, “Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media,” J. Opt. Soc. Am. A 22(9), 1866–1873 (2005).
    [Crossref] [PubMed]
  6. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  7. F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
    [Crossref] [PubMed]
  8. T. V. F. Abaya, S. Blair, P. Tathireddy, L. Rieth, and F. Solzbacher, “A 3D glass optrode array for optical neural stimulation,” Biomed. Opt. Express 3(12), 3087–3104 (2012).
    [Crossref] [PubMed]
  9. A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett. 35(24), 4133–4135 (2010).
    [Crossref] [PubMed]
  10. M. Chamanzar, M. Borysov, M. Maharbiz, and T. Blanche, “High-Density Optrodes for Multi-Scale Electrophysiology and Optogenetic Stimulation,” in IEEE EMBS (2014).
  11. E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
    [Crossref] [PubMed]
  12. X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
    [Crossref] [PubMed]
  13. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
    [Crossref] [PubMed]
  14. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  15. Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
    [Crossref] [PubMed]
  16. E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
    [Crossref] [PubMed]
  17. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  18. A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
    [Crossref] [PubMed]
  19. N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
    [Crossref] [PubMed]
  20. R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
    [Crossref] [PubMed]
  21. P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
    [PubMed]
  22. R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
    [Crossref]
  23. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [Crossref] [PubMed]
  24. J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
    [Crossref] [PubMed]
  25. C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21(8), 9982–9995 (2013).
    [Crossref] [PubMed]
  26. A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
    [Crossref] [PubMed]
  27. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
    [Crossref] [PubMed]
  28. American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1”. National Standards Institute, New York (2014).
  29. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]

2018 (1)

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

2017 (1)

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

2016 (2)

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

2015 (1)

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

2014 (3)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

2013 (5)

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

C.-L. Zou, F.-J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21(8), 9982–9995 (2013).
[Crossref] [PubMed]

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

E. S. Boyden, “A history of optogenetics: the development of tools for controlling brain circuits with light,” F1000 Biol. Rep. 3, 11 (2011).
[Crossref] [PubMed]

2010 (2)

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett. 35(24), 4133–4135 (2010).
[Crossref] [PubMed]

2007 (1)

2005 (2)

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

L. Yang and S. J. Miklavcic, “Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media,” J. Opt. Soc. Am. A 22(9), 1866–1873 (2005).
[Crossref] [PubMed]

2003 (1)

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Abaya, T. V. F.

Adibi, A.

Almutairi, A.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Alon, E.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Aloni, S.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Altoe, M. V.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Anikeeva, P.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Baker, B. J.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

Barnard, E. S.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Beketayev, K.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Bilsel, O.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Bischof, T. S.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Bjorninen, T.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Blair, S.

Blanche, T.

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

Borys, N. J.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Boyden, E. S.

Buzsáki, G.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Carmena, J. M.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Carmon, T.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Chamanzar, M.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Chan, E. M.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Chander, D.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Cho, I.-J.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Cohen, B. E.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Cohen, L. B.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Dai, H.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Deisseroth, K.

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

Diao, S.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Djurisic, M.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Dong, M.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Duan, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Falk, C. X.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Fan, W.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Fernandez-Bravo, A.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Fonstad, C. G.

Gambini, S.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Garfield, D. J.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Gong, Z.-J.

Guo, G.-C.

Han, G.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Han, Z.-F.

He, S.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Hyeon, T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Iafrati, J.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Im, M.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Johnson, N. J. J.

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

Katz, E. M.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Koralek, A.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Kosmidis, E. K.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

Le, H.-P.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Ledochowitsch, P.

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Lee, H.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Lee, J. H.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Lee, K. T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Levy, E. S.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Li, D.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Li, W.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Li, Y.-M.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Li, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lois, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Maharbiz, M. M.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Mao, A. W.

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Miklavcic, S. J.

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Moretti, L.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Muller, R.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Olivero, E.

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Owen, J. S.

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Özdemir, S. K.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Park, Y. I.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Pashaie, R.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Peng, B.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Prakash, R.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Prigge, M.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Rabaey, J. M.

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

Richner, T. J.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Rieth, L.

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Scholvin, J.

Schuck, P. J.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Scotognella, F.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Shu, F.-J.

Sohal, V. S.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Soltani, M.

Solzbacher, F.

Stark, E.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Suh, Y. D.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Sun, F.-W.

Tajon, C. A.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

Takle, K.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Tathireddy, P.

Tian, B.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Tomes, M.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Urban, J. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Vucinic, D.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

Wachowiak, M.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, Z.-Q.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Wei, X.-B.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Williams, J.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wise, K. D.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Wu, F.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Xiang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Yang, L.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

L. Yang and S. J. Miklavcic, “Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media,” J. Opt. Soc. Am. A 22(9), 1866–1873 (2005).
[Crossref] [PubMed]

Yao, K.

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Yegnanarayanan, S.

Yilmaz, H.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Yizhar, O.

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

Yoon, E.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Yoon, E.-S.

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

Zecevic, D.

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Zhang, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhong, M.-C.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Zhou, J.-H.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Zochowski, M.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Zorzos, A. N.

Zou, C.-L.

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

ACS Nano (3)

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cell. Mol. Neurobiol. (1)

B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

P. Ledochowitsch, E. Olivero, T. Blanche, and M. M. Maharbiz, “A transparent μECoG array for simultaneous recording and optogenetic stimulation,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2937–2940 (2011).
[PubMed]

F1000 Biol. Rep. (1)

E. S. Boyden, “A history of optogenetics: the development of tools for controlling brain circuits with light,” F1000 Biol. Rep. 3, 11 (2011).
[Crossref] [PubMed]

IEEE Rev. Biomed. Eng. (1)

R. Pashaie, P. Anikeeva, J. H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T. J. Richner, and J. Williams, “Optogenetic brain interfaces,” IEEE Rev. Biomed. Eng. 7, 3–30 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

N. J. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai, and A. Almutairi, “Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals,” J. Am. Chem. Soc. 139(8), 3275–3282 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

J. Neural Eng. (1)

F. Wu, E. Stark, M. Im, I.-J. Cho, E.-S. Yoon, G. Buzsáki, K. D. Wise, and E. Yoon, “An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications,” J. Neural Eng. 10(5), 056012 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Methods Enzymol. (1)

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361(17), 423–451 (2003).
[Crossref] [PubMed]

Nano Lett. (1)

E. M. Chan, C. Xu, A. W. Mao, G. Han, J. S. Owen, B. E. Cohen, and D. J. Milliron, “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space,” Nano Lett. 10(5), 1874–1885 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, C. A. Tajon, L. Moretti, M. V. Altoe, S. Aloni, K. Beketayev, F. Scotognella, B. E. Cohen, E. M. Chan, and P. J. Schuck, “Continuous-wave upconverting nanoparticle microlasers,” Nat. Nanotechnol. 13(7), 572–577 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Sci. Rep. (1)

J. Zhu, Ş. K. Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2014).
[Crossref] [PubMed]

Other (3)

R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014), pp. 412–413.
[Crossref]

American National Standards Institute, “American National Standard for the Safe Use of Lasers, ANSI Z136.1”. National Standards Institute, New York (2014).

M. Chamanzar, M. Borysov, M. Maharbiz, and T. Blanche, “High-Density Optrodes for Multi-Scale Electrophysiology and Optogenetic Stimulation,” in IEEE EMBS (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Energy level diagram of trivalent Yb3+ and Tm3+ showing the three primary transitions of interest in Tm3+, 3H43H6, 1G43H6, and 1D23F4 at 800 nm, 474 nm, and 450 nm, respectively.
Fig. 2
Fig. 2 a) Upconverted emission spectra comparing different Tm3+ concentrations, keeping Yb3 + = 40%, excited with 980 nm laser at 103 W/cm2 b), c) and d) Confocal scans of UCNPs, 2% Tm3+, excited by a 980 nm laser at 105 W/cm2, 50 ms integration time per pixel for different dilution levels. e) Spectrum of a single UCNP, 2% Tm3+, excited at the same power as a), integrated for 10 s. f) HRTEM image of core/shell 2% Tm3+ showing hexagonal beta-phase and continuous single crystal extending from core to shell domain
Fig. 3
Fig. 3 a) The fabrication process to realize MLBs. b) An optical micrograph of UCNP-based MLBs. c) 3D reconstructed confocal images of MLBs.
Fig. 4
Fig. 4 Schematic of the characterization setup. A custom-designed confocal microscope is coupled to a cooled-CCD spectrometer. The sample (DUT) is held on a precision xy stage equipped with piezoelectric actuators.
Fig. 5
Fig. 5 (a) Reconstructed confocal scan of MLB emission filtered in the range of λ = 400-900 nm in air. (b) Upconverted emission power dependence for 3H43H6 and (1G43H6 + 1D23F4) Tm3+ transitions, showing two and three photon dependences, respectively, and characteristic power-dependent saturation at high powers. Blue emission waterfall spectra for excitation intensities of 1.1 × 103, 1.5 × 103, 1.8 × 103, 2.4 × 103, 3.2 × 103, 4.2 × 103, 6.5 × 103, 9.9 × 103 and 1.1 × 104 W/cm2 shown in (c) and 800 nm emission spectra for excitation intensities of 102, 1.3 × 102, 1.7 × 102, 2.1 × 102, 3.0 × 102, 3.8 × 102, 5.9 × 102, 8.9 × 102 and 103 W/cm2 shown in (d).
Fig. 6
Fig. 6 a) Image of a mouse brain slice and the schematic of experiment for imaging through slice. b) Reconstructed confocal scan of MLB array, excited and collected through a 2 mm mouse brain tissue slice. Pillar outlines are clearly visible, with some aberration including elongation along the horizontal direction. c) Spectrum from one MLB collected through 2 mm brain slice.
Fig. 7
Fig. 7 (a) Zoomed-in images of MLBs imaged through air (left) and 2 mm brain slice (right). (b) Vertical line-cuts through the in-air (blue) and through-brain (green) scans. The measured intensity through brain slice is multiplied by a scaling factor of 250 for ease of comparison. All scans integrate only the 800 nm emission from UCNPs, excluding the other wavelengths using interference filters. (c) Calibration curve showing the ratio of blue emission to the NIR emission versus excitation power, which is known to be intensity dependent.
Fig. 8
Fig. 8 Near-Infrared light incident from the surface of the tissue interacts with the implanted MLBs and upconverts to locally-emitted visible light photons. The overall efficiency of this process depends on the propagation loss of the pump intensity, coupling efficiency of light to the MLBs, conversion efficiency of UCNPs, the number of illuminated UCNP particles, and different enhancement mechanisms (field enhancements and Purcell factor) inside the MLB. The directionality of the emission is also dictated by the shape of the MLB.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I e = I 0 e αd  × C p × E p ×η( I p )×N×D( θ,ϕ )× E e  ,

Metrics