Abstract

Ultraviolet (UV) rays have been identified as a carcinogen with long-term irradiation and are an important risk factor for skin cancer. Here, we report the use of optical coherence tomography/optical coherence tomography angiography (OCT/OCTA) to study acute UV-induced effects on skin in vivo. To understand the relationship between the acute effects and irradiated UV power density, three groups were irradiated with different power densities in our experiments. Furthermore, the same skin area was repeatedly scanned with OCT during UV irradiation to investigate the progress of the induced acute effects and after irradiation for observation of skin recovery. Subsequently, the OCT/OCTA results were quantitatively analyzed to acquire skin thickness and blood-vessel density for comparison. UV-induced acute effects on morphology and microcirculation can be identified from OCT/OCTA results, which showed the increases in the skin thickness and blood-vessel density and even severe damage types such as blisters. The results of quantitative analyses also illustrated that the severity of damage induced by UV irradiation can be distinguished and the skin recovery can be monitored with OCT. Our results indicate that OCT can be a promising tool for early detection of UV-induced acute skin damage.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of temporary cerebral effects induced by focused ultrasound with optical coherence tomography angiography

Meng-Tsan Tsai, Jia-Wei Zhang, Kuo-Chen Wei, Chih-Kuang Yeh, and Hao-Li Liu
Biomed. Opt. Express 9(2) 507-517 (2018)

In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography

Meng-Tsan Tsai, I-Chi Lee, Zhung-Fu Lee, Hao-Li Liu, Chun-Chieh Wang, Yo-Chun Choia, Hsin-Yi Chou, and Jiann-Der Lee
Biomed. Opt. Express 7(5) 1865-1876 (2016)

Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography

Meng-Tsan Tsai, Feng-Yu Chang, Cheng-Kuang Lee, Cihun-Siyong Alex Gong, Yu-Xiang Lin, Jiann-Der Lee, Chih-Hsun Yang, and Hao-Li Liu
Biomed. Opt. Express 5(7) 2009-2022 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
    [Crossref] [PubMed]
  2. T. Schwarz, “25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells,” Photochem. Photobiol. 84(1), 10–18 (2008).
    [PubMed]
  3. F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
    [Crossref] [PubMed]
  4. R. P. Sinha and D. P. Häder, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
    [Crossref] [PubMed]
  5. R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
    [Crossref] [PubMed]
  6. J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
    [Crossref] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  8. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
    [Crossref] [PubMed]
  9. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3(10), 2669–2680 (2012).
    [Crossref] [PubMed]
  10. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  11. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  12. C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref] [PubMed]
  13. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18(13), 13964–13980 (2010).
    [Crossref] [PubMed]
  14. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
    [Crossref] [PubMed]
  15. A. Curatolo, M. Villiger, D. Lorenser, P. Wijesinghe, A. Fritz, B. F. Kennedy, and D. D. Sampson, “Ultrahigh-resolution optical coherence elastography,” Opt. Lett. 41(1), 21–24 (2016).
    [Crossref] [PubMed]
  16. P. Meemon, J. Yao, Y. J. Chu, F. Zvietcovich, K. J. Parker, and J. P. Rolland, “Crawling wave optical coherence elastography,” Opt. Lett. 41(5), 847–850 (2016).
    [Crossref] [PubMed]
  17. M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
    [Crossref] [PubMed]
  18. C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
    [Crossref] [PubMed]
  19. M. T. Tsai, C. H. Yang, S. C. Shen, Y. J. Lee, F. Y. Chang, and C. S. Feng, “Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography,” Biomed. Opt. Express 4(11), 2362–2375 (2013).
    [Crossref] [PubMed]
  20. M. T. Tsai, D. R. Li, and M. C. Chan, “Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system,” Opt. Lett. 41(20), 4847–4850 (2016).
    [Crossref] [PubMed]
  21. L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
    [Crossref] [PubMed]
  22. H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
    [Crossref] [PubMed]
  23. M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
    [Crossref] [PubMed]
  24. J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
    [Crossref] [PubMed]
  25. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
    [Crossref] [PubMed]
  26. T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
    [Crossref] [PubMed]
  27. M. T. Tsai, J. W. Zhang, K. C. Wei, C. K. Yeh, and H. L. Liu, “Assessment of temporary cerebral effects induced by focused ultrasound with optical coherence tomography angiography,” Biomed. Opt. Express 9(2), 507–517 (2018).
    [Crossref] [PubMed]
  28. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (3)

2015 (1)

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

2014 (2)

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (2)

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

2010 (3)

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18(13), 13964–13980 (2010).
[Crossref] [PubMed]

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

2009 (1)

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

2008 (3)

T. Schwarz, “25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells,” Photochem. Photobiol. 84(1), 10–18 (2008).
[PubMed]

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

2007 (1)

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

2003 (1)

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

2002 (1)

R. P. Sinha and D. P. Häder, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref] [PubMed]

1997 (1)

Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Alberts, D. S.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Altmeyer, P.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Amaral, M. M.

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Amaro-Ortiz, A.

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
[Crossref] [PubMed]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Bader, A.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Banzhaf, C. A.

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

Barton, J. K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Behrendt, N.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Boms, S.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Bonnema, G. T.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Brooks, C. A.

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Cable, A.

Cela, E. M.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Chan, M. C.

Chang, F. Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C. L.

Chen, Z.

Chu, Y. J.

Curatolo, A.

D’Orazio, J.

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
[Crossref] [PubMed]

de Freitas, A. Z.

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Duckett, L. D.

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Elmagid, E. A.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Feng, C. S.

Ferrari, A.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fritz, A.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gambichler, T.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

González Maglio, D. H.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Gossage, K. W.

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Häder, D. P.

R. P. Sinha and D. P. Häder, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Hoffmann, K.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Jarrett, S.

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
[Crossref] [PubMed]

Jemec, G. B.

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Jemec, G. B. E.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

Jiang, J.

Jørgensen, T. M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Kamp, S.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Kennedy, B. F.

Khurana, M.

Korde, V. R.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Kreuter, A.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Krishnamurthy, C.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Kumar, M. B.

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

Künzlberger, B.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Lee, Y. J.

Leitgeb, R. A.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Leoni, J.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Leung, M. K.

Li, D. R.

Lim, Y.

Lin, A. J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, G.

Liu, H. L.

Lorenser, D.

Makita, S.

Maldonado, E. P.

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Mariampillai, A.

Meemon, P.

Mogensen, M.

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

Moriyama, E. H.

Morsy, H.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Morsy, H. A.

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

Moussa, G.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Munce, N. R.

Nurnberg, B. M.

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

Paech, V.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Parker, K. J.

Paz, M. L.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Pircher, M.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Raele, M. P.

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Ranger-Moore, J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Ranger-Moore, J. R.

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Rastogi, R. P.

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

Richa, A.

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

Ring, H. C.

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

Rolland, J. P.

Saboda, K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Salasche, S. J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Sampson, D. D.

Sand, M.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Saunder, B.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Schmetterer, L.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwarz, T.

T. Schwarz, “25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells,” Photochem. Photobiol. 84(1), 10–18 (2008).
[PubMed]

Scott, T.

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
[Crossref] [PubMed]

Shen, S. C.

Sinha, R. P.

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

R. P. Sinha and D. P. Häder, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref] [PubMed]

Slayton, L. D.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Smith, M. A.

Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
[Crossref] [PubMed]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Themstrup, L.

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

Thrane, L.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

Tong, Y.

Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
[Crossref] [PubMed]

Tromberg, B. J.

Tsai, M. T.

Tucker, S. B.

Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
[Crossref] [PubMed]

Tyagi,

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

Vasquez-Pinto, L. M.

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Villiger, M.

Vitkin, I. A.

Wang, R. K.

Warneke, J. A.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Wei, K. C.

Weill, F. S.

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Werkmeister, R. M.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Wijesinghe, P.

Wilson, B. C.

Xu, W.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Yamanari, M.

Yang, C. H.

Yang, V. X.

Yao, J.

Yasuno, Y.

Yatagai, T.

Yeh, C. K.

Zayan, H.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Zhang, J. W.

Zvietcovich, F.

Arch. Dermatol. Res. (1)

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. E. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res. 302(2), 105–111 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Clin. Exp. Dermatol. (1)

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol. 30(1), 79–82 (2005).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radiation and the skin,” Int. J. Mol. Sci. 14(6), 12222–12248 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. B. Jemec, “OCT imaging of skin cancer and other dermatological diseases,” J. Biophotonics 2(6-7), 442–451 (2009).
[Crossref] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

M. Mogensen, H. A. Morsy, B. M. Nurnberg, and G. B. E. Jemec, “Optical coherence tomography imaging of bullous diseases,” J. Eur. Acad. Dermatol. Venereol. 22(12), 1458–1464 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

J. Nucleic Acids (1)

R. P. Rastogi, A. Richa, M. B. Kumar, Tyagi, and R. P. Sinha, “Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair,” J. Nucleic Acids 2010, 1 (2010).
[Crossref] [PubMed]

J. Toxicol. Environ. Health (1)

Y. Tong, M. A. Smith, and S. B. Tucker, “Chronic ultraviolet exposure-induced p53 gene alterations in Sencar mouse skin carcinogenesis model,” J. Toxicol. Environ. Health 51(3), 219–234 (1997).
[Crossref] [PubMed]

J. Toxicol. Environ. Health A (1)

F. S. Weill, E. M. Cela, A. Ferrari, M. L. Paz, J. Leoni, and D. H. González Maglio, “Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function,” J. Toxicol. Environ. Health A 74(13), 838–847 (2011).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Photochem. Photobiol. (1)

T. Schwarz, “25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells,” Photochem. Photobiol. 84(1), 10–18 (2008).
[PubMed]

Photochem. Photobiol. Sci. (1)

R. P. Sinha and D. P. Häder, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Skin Res. Technol. (2)

C. A. Banzhaf, L. Themstrup, H. C. Ring, M. Mogensen, and G. B. Jemec, “Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy,” Skin Res. Technol. 20(2), 170–176 (2014).
[Crossref] [PubMed]

L. M. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, “Optical coherence tomography applied to tests of skin care products in humans--a case study,” Skin Res. Technol. 21(1), 90–93 (2015).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

J. K. Barton, K. W. Gossage, W. Xu, J. R. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salasche, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2(6), 525–535 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the OCT setup combined with UV irradiation equipment. C: collimator; DC: dispersion compensator; M: mirror; G: two-axis galvanometer; SL: scanning lens.
Fig. 2
Fig. 2 In vivo OCT images of mouse-ear skin obtained (a) before UV irradiation, and after UV irradiation with a power density of 0.14 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. After UV irradiation, the same skin area was repeatedly scanned at different time points of (h) 1 day, (i) 2 days, (j) 3 days, and (k) 4 days from irradiation for follow-up observation. The yellow arrows indicate the different layer structures including the epidermis (EP), dermis (D), and auricular cartilage (AC). TS: top surface and RS: rear surface.
Fig. 3
Fig. 3 Corresponding color-coded, projection-view OCTA results of Fig. 2. Images were obtained (a) before UV irradiation, and after UV irradiation with a power density of 0.14 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. (h) and (i) show enlarged views of (a) and (g) in the area indicated by the golden square in (g). After UV irradiation, the same skin area was continuously scanned at different time points of (j) 1 day, (k) 2 days, (l) 3 days, and (l) 4 days from irradiation for follow-up observation. The vessel size and density increased after UV irradiation and recovered in one day after irradiation. Each angiographic image covers a physical range of 3 × 3 mm2.
Fig. 4
Fig. 4 In vivo OCT images of mouse-ear skin obtained (a) before UV irradiation, and after UV irradiation with a power density of 0.61 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. After UV irradiation, the same skin area was scanned at different time points of (h) 1 day, (i) 2 days, (j) 3 days, and (k) 4 days from irradiation for follow-up observation. The yellow arrows indicate the different layer structures including the epidermis (EP), dermis (D), and auricular cartilage (AC). TS: top surface and RS: rear surface.
Fig. 5
Fig. 5 Corresponding color-coded, projection-view OCTA results of Fig. 4. Images were obtained (a) before UV irradiation, and after UV irradiation with a power density of 0.61 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. (h) and (i) show enlarged views of (a) and (g) in the area indicated by the golden square in (g). After UV irradiation, the same skin area was continuously scanned at different time points of (j) 1 day, (k) 2 days, (l) 3 days, and (l) 4 days from irradiation for follow-up observation. The results illustrate that UV irradiation with a higher power density caused skin inflammation, increasing the vessel size and density. Each angiographic image covers a physical range of 3 × 3 mm2.
Fig. 6
Fig. 6 In vivo OCT images of mouse-ear skin obtained (a) before UV irradiation, and after UV irradiation with a power density of 2.18 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. (h) The same skin area scanned 1 h after UV irradiation. The yellow arrows indicate the different layer structures including the epidermis (EP), dermis(D), and auricular cartilage (AC). The white arrows in (f)–(h) indicate the blisters induced by the strong UV irradiation.
Fig. 7
Fig. 7 Corresponding color-coded, projection-view OCTA results of Fig. 6. Images were obtained (a) before UV irradiation, and after UV irradiation with a power density of 2.18 W/cm2 for (b) 1.5 min, (c) 3 min, (d) 4.5 min, (e) 6 min, (f) 7.5 min, and (g) 9 min. (h) The same skin area scanned 1 h after UV irradiation. Each angiographic image covers a physical range of 3 × 3 mm2.
Fig. 8
Fig. 8 Corresponding photographs of Figs. 3, 5, and 7 taken (a)-(c) before and (d)-(f) at the time point of 1 h after UV irradiation stopped. The red squares indicate the OCT scanning area.
Fig. 9
Fig. 9 Estimation results of skin thickness from Figs. 2, 4, and 6. The power densities of UV irradiation are (a) 0.14 W/cm2, (b) 0.61 W/cm2, and (c) 2.18 W/cm2.
Fig. 10
Fig. 10 Estimation results of vessel density from Figs. 3, 5, and 7. The power densities of UV irradiation are (a) 0.14 W/cm2, (b) 0.61 W/cm2, and (c) 2.18 W/cm2.
Fig. 11
Fig. 11 The estimated PC values of (a) skin thickness and (b) vessel density for different power densities including 0.14, 0.61, and 2.18 W/cm2. The asterisk indicates p<0.05.

Metrics